Skip to main content
Log in

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The intermediate fluid vaporizer (IFV), different from other liquefied natural gas (LNG) vaporizers, has many advantages and has shown a great potential for future applications. In this present paper, studies of IFV and its heat transfer characteristics in the LNG vaporization unit E2 are systematically reviewed. The research methods involved include theoretical analysis, experimental investigation, numerical simulation, and process simulation. First, relevant studies on the overall calculation and system design of IFV are summarized, including the structural innovation design, the thermal calculation model, and the selection of different intermediate fluids. Moreover, studies on the fluid flow and heat transfer behaviors of the supercritical LNG inside the tubes and the condensation heat transfer of the intermediate fluid outside the tubes are summarized. In the thermal calculations of the IFV, the selections of the existing heat transfer correlations about the intermediate fluids are inconsistent in different studies, and there lacks the accuracy evaluation of those correlations or comparison with experimental data. Furthermore, corresponding experiments or numerical simulations on the cryogenic condensation heat transfer outside the tubes in the IFV need to be further improved, compared to those in the refrigeration and air-conditioning temperature range. Therefore, suggestions for further studies of IFV are provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Specific heat of material/(J·kg−1·K−1)

C p :

Constant-pressure heat capacity/(J·kg−1·K−1)

\({\overline C_p}\) :

Averaged constant-pressure heat capacity/(J·kg−1·K−1)

d :

Tube outside diameter/m

D b :

Equilibrium breakoff bubble diameter/m

f wm :

Heat surface material parameter

F Pr :

Influence term of reduced pressure

F q :

Influence term of heat flux

F R :

Influence term of surface roughness

F wm :

Influence term of wall material

g :

Gravitational acceleration/(m·s−2)

h :

Heat transfer coefficient/(W·m−2·K−1)

M :

Molecular mass/(kg·kmol−1)

P r :

Reduced pressure

Pr:

Prandtl number

q :

Heat flux/(W·m−2)

Nu :

Nusselt number

Nu g :

Heat transfer contribution driven by the gravity

Nu f :

Heat transfer contribution by the inertia force of vapor speed

r :

Latent heat/(J·kg−1)

Re :

Reynolds number

Ra :

Mean roughness height/µm

s 1 :

Tube pitch in the vertical direction of flow/m

s 2 :

Tube pitch in the direction of flow/m

T :

Temperature/K

T r :

Reduced temperature

λ :

Thermal conductivity/(W·m−1·K−1)

ρ :

Density/(kg·m−3)

σ :

Surface tension/(N·m−1)

η :

Viscosity/(Pa·s)

b:

Averaged parameter

f:

Fluid

L:

Saturated liquid state

N:

Tube row number

sat:

Saturated state

v:

Saturated vapor state

w:

Wall

References

  1. IGU. State of the LNG Industry. 2020 World LNG Report, 2020

  2. Cheng H, Ju Y L, Fu Y Z. Thermal performance calculation with heat transfer correlations and numerical simulation analysis for typical LNG open rack vaporizer. Applied Thermal Engineering, 2019, 149: 1069–1079

    Article  Google Scholar 

  3. Ooka I, Sato T, Niwa K. Apparatus and process for vaporizing liquefied natural gas. US patent, 813095, 1979

  4. Li J H. Process analysis of IFV seawater system. Shanghai Gas, 2013, (3): 4–6 (in Chinese)

  5. Chen Y D, Chen X D. Technology analysis of heat exchanger in large LNG plant and terminal. Natural Gas Industry, 2010, 30(01): 96–100, 147–148 (in Chinese)

    Google Scholar 

  6. Cai X H, Qin F. Research on the key technology of domestically produced intermediate medium gasifier. China Offshore Oil and Gas, 2013, 25(04): 59–62, 66 (in Chinese)

    Google Scholar 

  7. Liu F X, Dai Y Q, Wei W, et al. Feasibility of intermediate fluid vaporizer with spiral wound tubes. China Petroleum Processing and Petrochemical Technology, 2013, 15(01): 73–77

    Google Scholar 

  8. Liu F, Li H, Zhang X F, et al. Development and manufacture of LNG intermediate fluid vaporizer used in sea water condition. Chemical Industry and Engineering Progress, 2015, 34(S1): 99–103

    Google Scholar 

  9. Kim D Y, Sung T H, Kim K C. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system. Energy, 2016, 105: 57–69

    Article  Google Scholar 

  10. Wang Z, Cai W J, Hong W, et al. Multi-objective optimization design and performance evaluation of a novel multi-stream intermediate fluid vaporizer with cold energy recovery. Energy Conversion and Management, 2019, 195: 32–42

    Article  Google Scholar 

  11. Wang B J, Wang W, Qi C, et al. Simulation of performance of intermediate fluid vaporizer under wide operation conditions. Frontiers in Energy, 2020, 14(3): 452–462

    Article  Google Scholar 

  12. Bai Y H, Liao Y, Lu Y K, et al. Calculation method for heat exchange area of large-scale LNG intermediate fluid vaporizer. Natural Gas and Oil, 2013, 31(03): 31–35, 5 (in Chinese)

    Google Scholar 

  13. Pu L, Qu Z G, Bai Y H, et al. Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas. Applied Thermal Engineering, 2014, 65(1–2): 564–574

    Article  Google Scholar 

  14. Xu S Q, Chen X D, Fan Z C. Thermal design of intermediate fluid vaporizer for subcritical liquefied natural gas. Journal of Natural Gas Science and Engineering, 2016, 32: 10–19

    Article  Google Scholar 

  15. Higashi K, Kondou C, Koyama S. Feasibility analysis for intermediated fluid type LNG vaporizers using R32 and R410A considering fluid properties. International Journal of Refrigeration, 2020, 118: 325–335

    Article  Google Scholar 

  16. Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 1985, 12(1): 3–22

    Article  MATH  Google Scholar 

  17. Cooper M G. Saturation nucleate pool boiling-a simple correlation. In: Simpson H C, Hewitt G F, Boland D, Bott T R, Furber B N, Hall W B, Heggs P J, Rowe P N, Saunders E A D, Spalding D B, eds. 1st UK National Conference on Heat Transfer. London: The Institution of Chemical Engineers, 1984, 785–793

    Chapter  Google Scholar 

  18. Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer, 1980, 23(1): 73–87

    Article  Google Scholar 

  19. Gorenflo D, Baumhögger E, Windmann T, et al. Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: integral heat transfer for horizontal copper cylinders. International Journal of Refrigeration, 2010, 33 (7): 1229–1250

    Article  Google Scholar 

  20. Ribatski G, Jabardo JMS. Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces. International Journal of Heat and Mass Transfer, 2003, 46(23): 4439–4451

    Article  Google Scholar 

  21. Jung D, Kim Y, Ko Y, et al. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. International Journal of Refrigeration, 2003, 26(2): 240–248

    Article  Google Scholar 

  22. Jung D, Lee H, Bae D, et al. Nucleate boiling heat transfer coefficients of flammable refrigerants. International Journal of Refrigeration, 2004, 27(4): 409–414

    Article  Google Scholar 

  23. Wang Y Z, Hua Y X, Meng H. Numerical studies of supercritical turbulent convective heat transfer of cryogenic-propellant methane. Journal of Thermophysics and Heat Transfer, 2010, 24(3): 490–500

    Article  Google Scholar 

  24. Jackson J D, Hall W B. Forced convection heat transfer to fluids at supercritical pressure. In: Kakac S, Spalding D B, eds. Turbulent Forced Convection in Channels and Bundles. New York: Hemisphere, 1979, 563–612

    Google Scholar 

  25. Nusselt W. The surface condensation of water vapour. Journal of the Association of German Engineers, 1916, 60: 541–546

    Google Scholar 

  26. Dhir V, Lienhard J. Laminar film condensation on plane and axisymmetric bodies in nonuniform gravity. Journal of Heat Transfer, 1971, 93(1): 97–100

    Article  Google Scholar 

  27. Jung D, Chae S, Bae D, et al. Condensation heat transfer coefficients of flammable refrigerants. International Journal of Refrigeration, 2004, 27(3): 314–317

    Article  Google Scholar 

  28. Kern D Q. Mathematical development of tube loading in horizontal condensers. AIChE Journal, 1958, 4(2): 157–160

    Article  Google Scholar 

  29. Honda H, Uchima B, Nozu S, et al. Condensation of downward flowing R-113 vapor on bundles of horizontal smooth tubes. Transactions of the Japan Society of Mechanical Engineers Series B, 1988, 54(502): 1453–1460

    Article  Google Scholar 

  30. Zhukauskas A A. Convective Heat Transfer in the Heat Exchanger. Beijing: Science Press, 1986

    Google Scholar 

  31. Xu S Q, Cheng Q, Zhuang L J, et al. LNG vaporizers using various refrigerants as intermediate fluid: comparison of the required heat transfer area. Journal of Natural Gas Science and Engineering, 2015, 25: 1–9

    Article  Google Scholar 

  32. Han H, Yan Y, Wang S, et al. Thermal design optimization analysis of an intermediate fluid vaporizer for liquefied natural gas. Applied Thermal Engineering, 2018, 129: 329–337

    Article  Google Scholar 

  33. Yan Y, Li Y X, Wang S. The comparison and parameters optimization for the mixed intermediate fluid of intermediate fluid vaporizer. In: ASME 2019 Asia Pacific Pipeline Conference, Qingdao, China, 2019

  34. Wang S, Han H, Li Y X, et al. Parameters optimization of intermediate fluid vaporizer based on mixed working fluid. Oil & Gas Storage and Transportation, 2020, 39(01): 104–111

    Google Scholar 

  35. Ji X, Chen S S, Lin W S. Analysis of single-phase heat transfer process in LNG intermediate fluid vaporizer. Chinese Journal of Refrigeration Technology, 2016, 36(04): 57–60 + 67 (in Chinese)

    Google Scholar 

  36. Ji X, Chen S S, Song Y, et al. Heat transfer experiment of sub-cooled intermediate fluid vaporizer. CIESC Journal, 2015, 66(S2): 56–61

    Google Scholar 

  37. Song Y, Ji X, Lin W S. Numerical simulation of heat transfer process within sub-cooled intermediate fluid vaporizer. CIESC Journal, 2015, 66(S2): 62–65

    Google Scholar 

  38. Pizzarelli M, Urbano A, Nasuti F. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants. Numerical Heat Transfer Part A, 2010, 57(5): 297–314

    Article  Google Scholar 

  39. Yang V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems. Proceedings of the Combustion Institute, 2000, 28(1): 925–942

    Article  Google Scholar 

  40. Yang J, Oka Y, Ishiwatari Y, et al. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles. Nuclear Engineering and Design, 2007, 237 (4): 420–430

    Article  Google Scholar 

  41. Zhang X R, Yamaguchi H. Forced convection heat transfer of supercritical CO2 in a horizontal circular tube. Journal of Supercritical Fluids, 2007, 41(3): 412–420

    Article  Google Scholar 

  42. Sharabi M, Ambrosini W, He S, et al. Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels. Annals of Nuclear Energy, 2008, 35(6): 993–1005

    Article  Google Scholar 

  43. Sharabi M, Ambrosini W. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models. Annals of Nuclear Energy, 2009, 36(1): 60–71

    Article  Google Scholar 

  44. Pizzarelli M, Nasuti F, Paciorri R, et al. Numerical analysis of three-dimensional flow of supercritical fluid in asymmetrically heated channels. AIAA Journal, 2009, 47(11): 2534–2543

    Article  Google Scholar 

  45. Xu K K, Tang L J, Meng H. Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes. International Journal of Heat and Mass Transfer, 2015, 84: 346–358

    Article  Google Scholar 

  46. Liang K M, Yang B, Zhang Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels. Journal of Propulsion and Power, 1998, 14(5): 789–796

    Article  Google Scholar 

  47. Ricci D, Natale P, Battista F. Experimental and numerical investigation on the behaviour of methane in supercritical conditions. Applied Thermal Engineering, 2016, 107: 1334–1353

    Article  Google Scholar 

  48. Yao S G, Xu W J, Ye Y, et al. Numerical simulation analysis of flow and heat transfer of supercritical LNG in the IFV condenser. Bulgarian Chemical Communications, 2016, 48: 123–130

    Google Scholar 

  49. Xu S Q, Chen X D, Fan Z C. CFD simulation of supercritical LNG heat transfer in a horizontal tube of an intermediate fluid vaporizer. In: ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, NY, USA, 2017

  50. Xu S Q, Chen X D, Fan Z C, et al. The influence of chemical composition of LNG on the supercritical heat transfer in an intermediate fluid vaporizer. Cryogenics, 2018, 91: 47–57

    Article  Google Scholar 

  51. Cheng H, Ju Y L, Fu Y Z. Experimental and simulation investigation on heat transfer characteristics of supercritical nitrogen in a new rib tube of open rack vaporizer. International Journal of Refrigeration, 2020, 111: 103–112

    Article  Google Scholar 

  52. Cheng H, Yin L, Ju Y L, et al. Experimental investigation on heat transfer characteristics of supercritical nitrogen in a heated vertical tube. International Journal of Thermal Sciences, 2020, 152: 106327

    Article  Google Scholar 

  53. Kutateladze S S. Semi-empirical theory of film condensation of pure vapours. International Journal of Heat and Mass Transfer, 1982, 25 (5): 653–660

    Article  Google Scholar 

  54. Honda H, Nozu S. A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes. Journal of Heat Transfer, 1987, 109(1): 218–225

    Article  Google Scholar 

  55. Cavallini A, Col D D, Doretti L, et al. A new model for refrigerant condensation on the outside of three-dimensional enhanced tubes. In: Heat Transfer Conference, 1998, 6: 355–360

    Google Scholar 

  56. Al-Badri A R, Gebauer T, Leipertz A, et al. Element by element prediction model of condensation heat transfer on a horizontal integral finned tube. International Journal of Heat and Mass Transfer, 2013, 62: 463–472

    Article  Google Scholar 

  57. Jung D, Kim C B, Cho S, et al. Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for CFC11 and CFC12. International Journal of Refrigeration, 1999, 22 (7): 548–557

    Article  Google Scholar 

  58. Jung D, Kim C B, Hwang S M, et al. Condensation heat transfer coefficients of R22, R407C, and R410A on a horizontal plain, low fin, and turbo-C tubes. International Journal of Refrigeration, 2003, 26(4): 485–491

    Article  Google Scholar 

  59. Park K J, Jung D. Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes. Journal of Mechanical Science and Technology, 2005, 19(10): 1957–1963

    Article  Google Scholar 

  60. Gebauer T, Al-Badri A R, Gotterbarm A, et al. Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. International Journal of Heat and Mass Transfer, 2013, 56(1–2): 516–524

    Article  Google Scholar 

  61. Sajjan S K, Kumar R, Gupta A. Experimental investigation of vapor condensation of iso-butane over single horizontal plain tube under different vapor pressures. Applied Thermal Engineering, 2015, 76: 435–440

    Article  Google Scholar 

  62. Sajjan S K, Kumar R, Gupta A. Experimental investigation during condensation of R-600a vapor over single horizontal integral-fin tubes. International Journal of Heat and Mass Transfer, 2015, 88: 247–255

    Article  Google Scholar 

  63. Ji W T, Chong G H, Zhao C Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. International Journal of Refrigeration, 2018, 93: 259–268

    Article  Google Scholar 

  64. Chen S S, Ji X, Lin W S. Experiments on phase-change heat transfer of propane intermediate fluid vaporizer. CIESC Journal, 2015, 66 (S2): 192–197

    Google Scholar 

  65. Pang X D, Yang G C, Chen J, et al. Experimental investigation of heat transfer characteristics of propane condensation in helical baffle shell-tube heat exchanger. Chinese Journal of Refrigeration Technology, 2016, 036(005): 31–37 (in Chinese)

    Google Scholar 

  66. Mi X G, Yang G C, Chen J, et al. Experimental investigation on mixed hydrocarbon refrigerant flow condensation characteristics in shell side of helically baffled shell-and-tube condenser. Chinese Journal of Refrigeration Technology, 2018, 38(2): 6–10 (in Chinese)

    Google Scholar 

  67. Al-Badri A R, Bär A, Gotterbarm A, et al. The influence of fin structure and fin density on the condensation heat transfer of R134a on single finned tubes and in tube bundles. International Journal of Heat and Mass Transfer, 2016, 100: 582–589

    Article  Google Scholar 

  68. Li W, Sun Z C, Guo R H, et al. Condensation heat transfer of R410A on outside of horizontal smooth and three-dimensional enhanced tubes. International Journal of Refrigeration, 2019, 98: 1–14

    Article  Google Scholar 

  69. Ko J, Jeon D. Experimental study on film condensation heat transfer characteristics of R134a, R1234ze(E) and R1233zd(E) over condensation tube with enhanced surfaces. Heat and Mass Transfer, 2020, 56(11): 3001–3010

    Article  Google Scholar 

  70. Tang W Y, Kukulka D J, Li W, et al. Comparison of the evaporation and condensation heat transfer coefficients on the external surface of tubes in the annulus of a tube-in-tube heat exchanger. Energies, 2020, 13(4): 952

    Article  Google Scholar 

  71. Beatty K O, Katz D L. Condensation of vapors on outside of finned tubes. Chemical Engineering Progress, 1948, 44(1): 55–70

    Google Scholar 

  72. Yang Y W, Yin J X, Ou L J. Numerical study on condensation heat transfer of steam with non-condensable gas outside an elliptical tube. Science Technology and Engineering, 2016, 16(5): 71–76 (in Chinese)

    Google Scholar 

  73. Lu J H, Cao H S, Li J M. Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection. International Journal of Heat and Mass Transfer, 2019, 139: 564–576

    Article  Google Scholar 

  74. Minko K B, Yankov G G, Artemov V I, et al. A mathematical model of forced convection condensation of steam on smooth horizontal tubes and tube bundles in the presence of noncondensables. International Journal of Heat and Mass Transfer, 2019, 140: 41–50

    Article  Google Scholar 

  75. Park H C, Choi H S. CFD study of Marangoni condensation heat transfer of vapor mixture on a horizontal tube. Heat and Mass Transfer, 2020, 56(9): 2743–2755

    Article  Google Scholar 

  76. Ji W T, Mao S F, Chong G H, et al. Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes. Applied Thermal Engineering, 2019, 159: 113878

    Article  Google Scholar 

  77. Kleiner T, Rehfeldt S, Klein H. CFD model and simulation of pure substance condensation on horizontal tubes using the volume of fluid method. International Journal of Heat and Mass Transfer, 2019, 138: 420–431

    Article  Google Scholar 

  78. Zhang L L, Zhang G M, Mao W L, et al. Experimental and numerical study on filmwise condensation of pure propane and propane/methane mixture. International Journal of Heat and Mass Transfer, 2020, 156: 119744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglin Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ju, Y. Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics. Front. Energy 16, 429–444 (2022). https://doi.org/10.1007/s11708-021-0747-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-021-0747-y

Keywords

Navigation