Skip to main content
Log in

Identification of Aromatic Fatty Acids in Butter Fat

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Bovine milk fat contains a large variety of structurally different fatty acids. In this study, we describe the presence of aromatic fatty acids in a butter fat sample. Fatty acids were released from butter fat and converted into the corresponding methyl esters (FAME). Urea complexation was used to separate the main saturated fatty acids. GC/MS screening of the FAME in the filtrate of the urea complexation indicated the presence of aromatic fatty acids. By (1) conversion of two representatives into picolinyl esters which were analyzed by GC/MS, (2) linear log tR over carbon number plots (R 2 = 0.95) and by the use of two reference standards we were able to show that the phenyl unit was located on the terminal carbon of the straight acyl chain of the FAME. In a fraction gathered by countercurrent chromatography we were able to identify 3-phenylpropionic acid (Ph-3:0), 4-phenylbutyric acid (Ph-4:0), 5-phenylpentanoic acid (Ph-5:0), 6-phenylhexanoic acid (Ph-6:0), 7-phenylheptanoic acid (Ph-7:0), 8-phenyloctanoic acid (Ph-8:0), 9-phenylnonanoic acid (Ph-9:0), 10-phenyldecanoic acid (Ph-10:0), 11-phenylundecanoic acid (Ph-11:0), 12-phenyldodecanoic acid (Ph-12:0), 13-phenyltridecanoic acid (Ph-13:0), along with one unsaturated phenyldecenoic acid (Ph-10:1) isomer. Preliminary results indicate that the aromatic fatty acids may have been formed exogenously in the rumen of the cows. The total amount of the aromatic fatty acids was estimated at 0.15 mg/g butter fat, which corresponds with an average daily intake of ~5 mg per day in Germany and ~4.4 mg per day in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLA:

Conjugated linoleic fatty acid

FAME:

Fatty acid methyl ester(s)

GC/MS:

Gas chromatography with mass spectrometry

m/z :

Mass-to-charge ratio

Ph-2:0:

2-Phenylacetic acid

Ph-3:0:

3-Phenylpropionic acid

Ph-4:0:

4-Phenylbutyric acid

Ph-5:0:

5-Phenylpentanoic acid

Ph-6:0:

6-Phenylhexanoic acid

Ph-7:0:

7-Phenylheptanoic acid

Ph-8:0:

8-Phenyloctanoic acid

Ph-9:0:

9-Phenylnonanoic acid

Ph-10:0:

10-Phenyldecanoic acid

Ph-10:1:

10-Phenyldecenoic acid

Ph-11:0:

11-Phenylundecanoic acid

Ph-12:0:

12-Phenyldodecanoic acid

Ph-13:0:

13-Phenyltridecanoic acid

Ph-13:1:

13-Phenyltridecenoic acid

Ph-14:0:

14-Phenyltetradecanoic acid

Ph-15:0:

15-Phenylpentadecanoic acid

Ph-15:1:

15-Phenylpentadecenoic acid

Ph-18:0:

18-Phenyloctadecanoic acid

SIM:

Selected ion monitoring

t R :

Retention time

u:

Atom mass unit

References

  1. Jensen RG (2002) The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 85:295–350

    Article  CAS  Google Scholar 

  2. Schröder M, Vetter W (2013) Detection of 430 fatty acid methyl esters from a transesterified butter sample. J Am Oil Chem Soc 90:771–790

    Article  Google Scholar 

  3. Jensen RG, Diemair W, Heinmann W, Kiermann F, Schormüller J, Souci SW, der Handbuch Lebensmittelchemie (1968) Band 3/1 Tierische Lebensmittel. Springer, Berlin, pp 37–38

    Google Scholar 

  4. Winkler K, Steinhart H (2001) Identification of conjugated isomers of linolenic acid and arachidonic acid in cheese. J Sep Sci 24:663–668

    Article  CAS  Google Scholar 

  5. Kraft J, Collomb M, Möckel P, Sieber R, Jahreis G (2003) Differences in CLA isomer distribution of cow’s milk lipids. Lipids 38:657–664

    Article  CAS  Google Scholar 

  6. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH (1993) Intake of trans fatty acids and risk of coronary heart disease among women. Lancet 341:581–585

    Article  CAS  Google Scholar 

  7. Odegaard AO, Pereira MA (2006) trans-Fatty acids, insulin resistance, and type 2 diabetes. Nutr Rev 64:364–372

    Article  Google Scholar 

  8. Wongtangtintharn S, Oku H, Iwasaki H, Inafuku M, Toda T (2004) Effect of branched-chain fatty acid on fatty acids biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol 50:137–143

    Article  CAS  Google Scholar 

  9. Thurnhofer S, Lehnert K, Vetter W (2008) Exclusive quantification of methyl branched fatty acids and minor 18:1-isomers in foodstuff by GC/MS in the SIM mode using 10,11-dichloroundecanoic acid and fatty acid ethyl esters as internal standards. Eur Food Res Technol 226:975–983

    Article  CAS  Google Scholar 

  10. Guth H, Grosch W (1992) Furan fatty acids in butter and butter oil. Z Lebensm Unters Forsch 194:360–362

    Article  CAS  Google Scholar 

  11. Spiteller G (2005) Furan fatty acids: occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet? Lipids 40:755–771

    Article  CAS  Google Scholar 

  12. Jenske R, Vetter W (2009) Concentrations of medium-chain 2- and 3-hydroxy fatty acids in foodstuffs. Food Chem 114:1122–1129

    Article  CAS  Google Scholar 

  13. Lough AK (1975) The chemistry and biochemistry of phytanic, pristanic and related acids. Prog Chem Fats Lipids 14(C):1–48

    Article  Google Scholar 

  14. Schogt JCM, Haverkamp BP (1965) Isolation of 11-cyclohexylundecanoic acid from butter. J Lipid Res 6:466–470

    CAS  Google Scholar 

  15. Patton S, Kesler EM (1967) Presence and significance of phenyl-substituted fatty acids in bovine rumen contents. J Dairy Sci 50:1505–1508

    Article  CAS  Google Scholar 

  16. Lipid library, http://lipidlibrary.aocs.org/

  17. Schmidt PC, Holman RT, Soukup VG (1997) 13-Phenyltridencanoic acid in seed lipids of some aroids. Phytochem 45:1173–1175

    Article  Google Scholar 

  18. Christie WW (2003) 13-Phenyltridec-9-enoic and 15-phenylpentadec-9-enoic acids in Arum maculatum seed oil. Eur J Lipid Sci Technol 105:779–780

    Article  CAS  Google Scholar 

  19. Meija J, Soukup VG (2004) Phenyl-terminated fatty acids in seeds of various aroids. Phytochemistry 65:2229–2237

    Article  CAS  Google Scholar 

  20. Saglik S, Alpmar K, Imre S (2002) Fatty acid composition of Dracunculus vulgaris Schott (Araceae) seed oil from Turkey. J Pharm Pharm Sci 5:231–233

    CAS  Google Scholar 

  21. Rezanka T, Schreiberová O, Cejková A, Sigler K (2011) The genus Dracunculus—a source of triacylglycerols containing odd-numbered ω-phenyl fatty acids. Phytochem 72:1914–1926

    Article  CAS  Google Scholar 

  22. Pupo MT, Vieira PC, Fernandes JB, Da Silva MFDGF (1996) A cycloartane triterpenoid and ω-phenyl alkanoic and alkenoic acids from Trichilia claussenii. Phytochem 42:795–798

    Article  CAS  Google Scholar 

  23. Carballeira NM, Sostre A, Stefanov K, Popov S, Kujumigiev A, Dimitrova-Konaklieva S, Tosteson CG, Tosteson TR (1997) The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexanedecenoic acid. Lipids 32:1271–1275

    Article  CAS  Google Scholar 

  24. Eisenhauer RA, Beal RE, Black IT, Friedrich IP (1996) Cyclic fatty acids removal of aromatic acids formed during hydrogenation. J Am Oil Chem Soc 43:515–518

    Article  Google Scholar 

  25. Coenen JWE, Wieske T, Cross RS, Rinke H (1967) Occurrence, detection, during hydrogenation and prevention of cyclization of fatty oils. J Am Oil Chem Soc 43:344–349

    Article  Google Scholar 

  26. Zeman A, Scharmann H, Eckert WR (1969) Strukturaufklärung cyclischer Fettsäuremethylester I: massenspektrometrie von ω-(o-Alkylphenyl)alkancarbonsäure-methylestern. Fette Seifen Anstrichm 71:283–288

    Article  CAS  Google Scholar 

  27. Scharmann H, Eckert WR, Zeman A (1969) Strukturaufklärung cyclischer Fettsäure-methylester I: zusammensetzung von Gemischen aromatischer Fettsäure-methylester aus den Cyclisierungs- und Aromatisierungsprodukten von Leinöl- und Holzöl-Fettsäure-methylestern, Linolsäure und Linolsäure-methylester. Fette Seifen Anstrichm 71:118–121

    Article  CAS  Google Scholar 

  28. Campra-Madrid P, Guil-Guerrero JL (2002) High-performance liquid chromatographic purification of gamma-linolenic acid (GLA) from the seed oil of two Boraginaceae species. Chromatographia 56:673–677

    Article  CAS  Google Scholar 

  29. Thurnhofer S, Hottinger G, Vetter W (2007) Enantioselective determination of anteiso fatty acids in food samples. Anal Chem 79:4696–4701

    Article  CAS  Google Scholar 

  30. Kapp T, Vetter W (2009) Offline coupling of high-speed countercurrent chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components. J Chromatogr A 1216:8391–9397

    Article  CAS  Google Scholar 

  31. Thurnhofer S, Vetter W (2006) Application of ethyl esters and d 3 -methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. J Agric Food Chem 54:3209–3214

    Article  CAS  Google Scholar 

  32. Hauff S, Vetter W (2010) Exploring the fatty acids of Vernix Caseosa in form of their methyl esters by off-line coupling of non-aqueous RP-HPLC and GC/EI-MS. J Chromatogr A 1217:8270–8278

    Article  CAS  Google Scholar 

  33. Budzikiewicz H, Schäfer M (2005) Massenspektrometrie. Eine Einführung, Wiley-VCH

    Google Scholar 

  34. Thurnhofer S, Vetter W (2005) A gas chromatography/electron ionization-mass spectrometry-selected ion monitoring method for determining the fatty acid pattern in food after formation of fatty acid methyl esters. J Agric Food Chem 53:8896–8903

    Article  CAS  Google Scholar 

  35. Turlin E, Perrotte-piquemal M, Danchin A, Biville F (2001) Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. J Mol Microbiol Biotechnol 3:127–133

    CAS  Google Scholar 

  36. Narayana K, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna P (2007) Biological activity of phenylpropionic acid from a terrestrial Streptomycetes. Pol J Microbiol 56:191–197

    CAS  Google Scholar 

  37. Martin AK (1982) The origin of urinary aromatic compounds excreted by ruminants. 1. The metabolism of quinic, cyclohexanecarboxylic and non-phenolic aromatic acids to benzoic acids. Br J Nutr 47:139–154

    Article  CAS  Google Scholar 

  38. Marvin H, Krechting C, Van Loo E, Snijders C, Lommen A, Dolstra O (1996) Relationship between phenolic acids formed during rumen degradation of maize of samples and in vitro digestibility. J Sci Food Agric 71:111–118

    Article  CAS  Google Scholar 

  39. Hutchinson RB, Alexander JC (1963) The structure of a cyclic C18 acid from heated linseed oil. J Org Chem 28:2522

    Article  Google Scholar 

  40. Eckert WR (1968) Bestimmung aromatischer Fettsäuren in hydrierten cyclischen Fettsäuren. Fette Seifen Anstrichm 70:329–331

    Article  CAS  Google Scholar 

  41. Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiol 148:1407–1412

    CAS  Google Scholar 

  42. German Ministry of Nutrition and Agriculture; statistics and reports (2012) http://berichte.bmelv-statistik.de/DFT-9100080-0000.pdf (in German)

  43. Arnold C, Jahreis G (2011) Milchfett und Gesundheit. Ern Umsch 58:177–181

    CAS  Google Scholar 

  44. Liu L, Shack S, Stetler-Stevenson WG, Hudgins WR, Samid D (1994) Differentiation of cultured human melanoma cells induced by the aromatic fatty acids phenylacetate and phenylbutyrate. J Invest Dermatol 103:335–340

    Article  CAS  Google Scholar 

  45. Miller AC, Whittaker T, Thibault A, Samid D (1997) Modulation of radiation response of human tumour cells by the differentiation inducers, phenylacetate and phenylbutyrate. Int J Radiat Biol 22:211–218

    Google Scholar 

  46. Witzig TE, Timm M, Stenson M, Svingen PA, Kaufmann SH (2000) Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clin Canc Res 6:681–692

    CAS  Google Scholar 

  47. James MO, Smith RL, Williams RT, Reidenberg FRS, Reidenberg M (1972) The conjugation of phenylacetic acid in human, sub-human primates and some non primate species. Proc R Soc Lond B 182:25–35

    Article  CAS  Google Scholar 

  48. Hudgins WR, Shack S, Myers CE, Samid D (1995) Cytostatic activity of phenylacetate and derivatives against tumor cells correlation with lipophilicity and inhibition of protein prenylation. Biochem Pharmacol 50:1273–1279

    Article  CAS  Google Scholar 

  49. American Chemical Society (1966) Aromatic fatty acids marketed. Chem Eng News 44:21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Vetter.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, M., Abdurahman, H., Ruoff, T. et al. Identification of Aromatic Fatty Acids in Butter Fat. J Am Oil Chem Soc 91, 1695–1702 (2014). https://doi.org/10.1007/s11746-014-2516-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2516-0

Keywords

Navigation