Skip to main content
Log in

Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application

静电纺丝制备高度多孔石墨烯/TiO2 复合材料的纳米纤维及光催化性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

We reported the fabrication of highly porous graphene/TiO2 composite nanofibers in the form of a nonwoven mat by electrospinning followed by calcination in air at 450 °C. The graphene can uniformly disperse in highly porous TiO2 nanofibers. The highly porous graphene/TiO2 composite nanofibers exhibited excellent catalytic activities. The new method for producing graphene/TiO2 composite nanofibers is versatile and can be extended to fabricate various types of metal oxide and graphene nanocomposites.

摘要

本文报道了一种利用静电纺丝制备高度多孔的石墨烯/TiO2 复合材料纳米纤维的方法。 该方法通过静电纺丝将石墨烯与有机钛源复合, 经 450 °C 焙烧后得到分布均匀、 具有高度多孔的石墨烯/TiO2 复合材料纳米纤维。 该复合材料表现出优异的光催化性能。 制备石墨烯/TiO2 复合材料纳米纤维的新方法用途广泛, 可用于制备各种金属氧化物和石墨烯纳米复合材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CUI Yi, WEI Qing-qiao, PARK H, LIEBER C. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293: 1289–1292.

    Article  Google Scholar 

  2. LU Bing-an, WANG Ya-jiang, LIU Yan-xia, DUAN Hui-gao, ZHOU Jin-yuan, ZHANG Zhen-xing, WANG You-qing, LI Xiao-dong, WANG Wei, LAN Wei, XIE Er-qing. Superhighthroughput needleless electrospinning using a rotary cone as spinneret [J]. Small, 2010, 6: 1612–1616.

    Article  Google Scholar 

  3. LU Bing-an, ZHANG Zhen-xing, BAO Zhong, LI Xiaodong, LIU Yan-xia, ZHU Chen-quan, DUAN Hui-gao, XIE Yi-zhu, WANG You-qing, XIE Er-qing. Carbon nanonodules fewer than ten graphenes thick grown on aligned amorphous carbon nanofibers [J]. Carbon, 2011, 49: 1939–1945.

    Article  Google Scholar 

  4. ZHU Jian, ZHANG Guan-hua, YU Xin-zhi, LI Qiu-hong, LU Bing-an. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries [J]. Nano Energy, 2014, 3: 80–87.

    Article  Google Scholar 

  5. DUAN Hui-gao, XIE Er-qing, HAN Li, XU Zhi. Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation [J]. Advanced Materials, 2008, 20: 3284–3288.

    Article  Google Scholar 

  6. ZHU Jian, XU Zhi, LU Bing-an. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications [J]. Nano Energy, 2014, 7: 114–123.

    Article  Google Scholar 

  7. WANG Long-lu, LI Yue, LIU Yu-tang. Reduced graphene oxide@ TiO2 nanorod@ reduced graphene oxide hybrid nanostructures for photoelectrochemical hydrogen production [J]. Micro & Nano Letters, 2017, 12(7): 494–496.

    Article  Google Scholar 

  8. GIRIT C, MEYER J, ERNI R, ROSSELL M, KISIELOWSKI C, YANG Li, PARK C, CROMMIE M, COHEN M, LOUIE S, ZETTL A. Graphene at the edge: Stability and dynamics [J]. Science, 2009, 323: 1705–1708.

    Article  Google Scholar 

  9. LU Bing-an, LI Ting, ZHAO Hai-tao, LI Xiao-dong, GAO Cai-tian, ZHANG Sheng-xiang, XIE Er-qing. Graphenebased composite materials beneficial to wound healing [J]. Nanoscale, 2012, 4: 2978–2982.

    Article  Google Scholar 

  10. HU Wen-bing, PENG Cheng, LUO Wei-jie, LU Min, LI Xiao-ming, LI Di, HUANG Qing, FAN Chun-hai. Graphenebased antibacterial paper [J]. ACS Nano, 2010, 4: 4317–4323.

    Article  Google Scholar 

  11. STANDLEY B, BAO Wen-zhong, ZHANG Hang, BRUCH J, LAU Chun-ning, BOCKRATH M. Graphene-based atomicscale switches [J]. Nano Letter, 2008, 8: 3345–3349.

    Article  Google Scholar 

  12. STANKOVICH S, DIKIN D, DOMMETT G, KOHLHAAS K, ZIMNEY E, STACH E, PINER R, NGUYEN S, RUOFF R. Graphene-based composite materials [J]. Nature, 2006, 442: 282–286.

    Article  Google Scholar 

  13. STOLLER M, PARK S, ZHU Y, AN J, RUOFF R. Graphene-based ultracapacitors [J]. Nano Letter, 2008, 8(10): 3498–3502.

    Article  Google Scholar 

  14. ALLEN M, TUNG V, KANER R. Honeycomb carbon: A review of graphene [J]. Chemical Reviews, 2009, 110: 132–145.

    Article  Google Scholar 

  15. ZHANG Yin, NAYAK T, HONG H, CAI Wei-bo. Graphene: A versatile nanoplatform for biomedical applications [J]. Nanoscale, 2012, 4: 3833–3842.

    Article  Google Scholar 

  16. LI Xiao-dong, ZHANG Yong-zhe, ZHANG Zhen-xing, ZHOU Jing-yuan, SONG Jie, LU Bing-an, XIE Er-qing, LAN Wei. Electrospraying tuned photoanode structures for dye-sensitized solar cells with enhanced energy conversion efficiency [J]. Journal of Power Sources, 2011, 196: 1639–1644.

    Article  Google Scholar 

  17. WANG Bo, CHEN Zhi-ming, ZHANG Jia-nan, CAO Jing-jing, WANG Shu-xia, TIAN Qiu-ge, GAO Ming, XU Qun. Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol-gel reaction: Effect of graphene oxide on PVA nanofibers and growth of TiO2 [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 318–325.

    Article  Google Scholar 

  18. PANT H, ADHIKARI S, PANT B, JOSHI M, KIM H, PARK C, KIM C. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning [J]. Journal of Colloid and Interface Science, 2015, 457: 174–179.

    Article  Google Scholar 

  19. KIM C, KIM B, YANG K. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis [J]. Carbon, 2012, 50: 2472–2481.

    Article  Google Scholar 

  20. ZHAO Yin, LI Chun-zhong, LIU Xiu-hong, GU Feng. Highly enhanced degradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation [J]. Journal of Alloys and Compounds, 2007, 440: 281–286.

    Article  Google Scholar 

  21. ZHENG S, WANG T, HAO W, SHEN R. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation [J]. Vacuum, 2002, 65: 155–159.

    Article  Google Scholar 

  22. ZHANG Hao, LV Xiao-jun, LI Yue-ming, WANG Ying, LI Jing-hong. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano, 2009, 4: 380–386.

    Article  Google Scholar 

  23. CHEN Jun-song, WANG Zhi-yu, DONG Xiao-chen, CHEN Peng, LOU Xiong-wen. Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities [J]. Nanoscale, 2011, 3: 2158–2161.

    Article  Google Scholar 

  24. DING Shu-jiang, CHEN Jun-song, LUAN De-yan, BOEY F, MADHAVI S, LOU Xiong-wen. Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J]. Chemical Communications, 2008, 8: 5780–5782.

    Google Scholar 

  25. FENG Xin-jian, SHANKAR K, VARGHESE O, PAULOSE M, LATEMPA T, GROMES C. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications [J]. Nano Letter, 2008, 8: 3781–3786.

    Article  Google Scholar 

  26. ZHU Kai, NEALE N, MIEDANER A, FRANK A. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Letter, 2007, 7: 69–74.

    Article  Google Scholar 

  27. LI Dan, WANG Yu-liang, XIA You-nan. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films [J]. Advanced Materials, 2004, 16: 361–366.

    Article  Google Scholar 

  28. LI Dan, XIA You-nan. Electrospinning of nanofibers: reinventing the wheel? [J]. Advanced Materials, 2004, 16: 1151–1170.

    Article  Google Scholar 

  29. LU Xiao-feng, WANG Ce, WEI Yen. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications [J]. Small, 2009, 5: 2349–2370.

    Article  Google Scholar 

  30. RAMAKRISHNA S, FUJIHARA K, TEO W, YONG T, MA Zu-wei, RAMASESHAN R. Electrospun nanofibers: Solving global issues [J]. Materials Today, 2006, 9: 40–50.

    Article  Google Scholar 

  31. ZHU Pei-ning, NAIR A, PENG Sheng-jie, YAN Sheng-yuan, RAMAKRISHNA S. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning [J]. ACS Applied Materials & Interfaces, 2012, 4: 581–585.

    Article  Google Scholar 

  32. ZHU Jian, LEI Dan-ni, ZHANG Guan-hua, LU Bing-an, WANG Tai-hong. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries [J]. Nanoscale, 2013, 5: 5499–5505.

    Article  Google Scholar 

  33. ZHU Jian, ZHANG Guan-hua, YU Xin-zhi, LI Qiu-hong, LU Bing-an, XU Zhi. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithiumion batteries [J]. Nano Energy, 2014, 3: 80–87.

    Article  Google Scholar 

  34. LU Bing-an, ZHU Cheng-quan, ZHANG Zhen-xing, LAN Wei, XIE Er-qing. Preparation of highly porous TiO2 nanotubes and their catalytic applications [J]. Journal of Materials Chemistry, 2012, 22: 1375–1379.

    Article  Google Scholar 

  35. LINSEBIGLER A, LU Guang-quan, YATES Y. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95: 735–758.

    Article  Google Scholar 

  36. INAGAKI M, KOJIN F, TRYBA B, TOYODA M. Carbon-coated anatase: The role of the carbon layer for photocatalytic performance [J]. Carbon, 2005, 43: 1652–1659.

    Article  Google Scholar 

  37. NAIR R, BLAKE P, GRIGORENKO A, NOVOSELOV K, BOOTH T, STAUBER T, PERES N, GEIM A. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320: 1308–1309.

    Article  Google Scholar 

  38. ABERGEL D, FALO V. Optical and magneto-optical far-infrared properties of bilayer graphene [J]. Physical Review B, 2007, 75: 155430.

    Article  Google Scholar 

  39. TANG D, ZHANG G. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance [J]. Applied Surface Science, 2017, 391: 415–422.

    Article  Google Scholar 

  40. TANG D, ZHANG G. Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity [J]. Ultrasonics Sonochemistry, 2017, 37: 208–215.

    Article  Google Scholar 

  41. WAN Z, ZHANG G, WU X, YIN S. Novel visible-lightdriven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction [J]. Applied Catalysis B: Environmental, 2017, 207: 17–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-guo Liu  (刘云国).

Additional information

Foundation item: Project(41271332) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Liu, Yg. Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application. J. Cent. South Univ. 25, 2182–2189 (2018). https://doi.org/10.1007/s11771-018-3906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3906-5

Key words

关键词

Navigation