Skip to main content
Log in

GF-3 data real-time processing method based on multi-satellite distributed data processing system

基于多卫星分布式数据处理系统的高分三号卫星数据实时处理方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Due to the limited scenes that synthetic aperture radar (SAR) satellites can detect, the full-track utilization rate is not high. Because of the computing and storage limitation of one satellite, it is difficult to process large amounts of data of spacebome synthetic aperture radars. It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing. A multi-satellite distributed SAR real-time processing method based on Chirp Scaling (CS) imaging algorithm is studied in this paper, and a distributed data processing system is built with field programmable gate array (FPGA) chips as the kernel. Different from the traditional CS algorithm processing, the system divides data processing into three stages. The computing tasks are reasonably allocated to different data processing units (i.e., satellites) in each stage. The method effectively saves computing and storage resources of satellites, improves the utilization rate of a single satellite, and shortens the data processing time. Gaofen-3 (GF-3) satellite SAR raw data is processed by the system, with the performance of the method verified.

摘要

合成孔径雷达(SAR)卫星能探测到的范围有限, 全轨利用率不高。单个卫星的计算和存储资源 有限, 难以完成大量星载合成孔径雷达数据的处理。拟采用新的组网卫星数据处理方法, 提高星上数 据处理效率。本文研究了一种基于线频调(CS)成像算法的多卫星分布式SAR实时处理方法, 并以现 场可编程门阵列(FPGA)芯片为核心构建了分布式数据处理系统。不同于传统的CS算法处理过程, 该 系统将处理过程分为三个阶段。每个阶段内运算任务被合理地分配给不同的数据处理单元(即卫星)。 该方法有效降低了卫星计算与存储资源, 提升了单个卫星全轨利用率, 节省了数据处理时间。利用系 统对高分三号卫星(GF-3)卫星SAR原始数据的成像处理, 检验方法的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Lin, JIANG Li-ming, LI Hong-zhong. Improved SMB speckle filtering of polarimetric SAR data with synergistic use of orientation angle compensation and spatial majority rule [J]. Journal of Central South University, 2016, 23(6): 1508–1514. DOI: 10.1007/s11771-016-3202-1.

    Article  Google Scholar 

  2. SUN Guang-cai, XING Meng-dao, XIA Xiang-gen, WU Yi-rong, BAO Zheng. Robust ground moving-target imaging using deramp-Keystone processing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 966–982. DOI: 10.1109/TGRS.2012.2204889.

    Article  Google Scholar 

  3. ROTH A. TerraSAR-X: A new perspective for scientific use of high resolution spaceborne SAR data [C]// Workshop on Remote Sensing & Data Fusion Over Urban Areas. IEEE, 2003. DOI: 10.1109/DFUA.2003.1219947.

    Google Scholar 

  4. SUN Guang-cai, XING Meng-dao, XIA Xiang-gen, WU Yu-feng, BAO Zheng. Multichannel full-aperture azimuth processing for beam steering SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4761–4778. DOI: 10.1109/TGRS.2012.2230267.

    Article  Google Scholar 

  5. ZUO Shao-shan, XING Meng-dao, XIA Xiang-gen, SUN Guang-cai. Improved signal reconstruction algorithm for multichannel SAR Based on the Doppler Spectrum Estimation [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1425–1442. DOI: 10.1109/JSTARS.2016.2618518.

    Article  Google Scholar 

  6. SUN Guang-cai, LIU Yan-bin, XING Meng-dao, GUO Liang, YANG Jun. A real-time imaging algorithm based on sub-aperture CS-Dechirp for GF3-SAR data [J]. Sensors, 2018, 18(8). DOI: 10.3390/sl8082562.

    Google Scholar 

  7. WANG Tao-yang, ZHANG Guo, YU Lei, ZHAO Rui-shan, DENG Ming-jun, XU Kai. Multi-mode GF-3 satellite image geometric accuracy verification using the RPC model [J]. Sensors, 2017, 17(9): No. 2005. DOI: 10.3390/s17092005.

    Google Scholar 

  8. SUN Guang-cai, XING Meng-dao, XIA Xiang-gen, YANG Jun, WU Yi-rong, BAO Zheng. A unified focusing algorithm for several modes of SAR based on FrFT [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. DOI: 10.1109/tgrs.2012.2212280.

    Article  Google Scholar 

  9. SUN Guang-cai, XING, Meng-dao, WANG Yong, WU Yu-feng, WU Yi-rong, BAO Zheng. Sliding spotlight and TOPS SAR data processing without subaperture [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1036–1040. DOI: 10.1109/lgrs.2011.2151174.

    Article  Google Scholar 

  10. LIU Jin, CHEN Liang, LIU Ying, XIE Yi-zhuang. Design of spacebome SAR imaging processing and fast verification based on FPGA [C]// International Radar Conference. IET, 2013: 1–5. DOI: 10.1049/cp.2013.0420.

    Google Scholar 

  11. GAO Li-ning, LONG Teng. Spaceborne digital signal processing system design based on FPGA [C]// Image and Signal Processing 2008, Congress on IEEE. 2008: 577–581. DOI: 10.1109/CISP.2008.658.

    Chapter  Google Scholar 

  12. GUO Meng, JIAN Fang-jun, ZHANG Qin, XU Bin, WANG Zheng-song, HAN Cheng-de. FPGA-based real-time imaging system for spaceborne SAR [J]. Journal of Computer Research and Development, 2007, 44(3): 497–502. DOI: 10.1360/crad20070319. (in Chinese)

    Article  Google Scholar 

  13. FAN Yu-jie, CHEN Xin-liang, WEI Yang-kai, DING Ze-gang, WANG Yan, WEN Yu-han, TIAN Wei-ming. The distributed SAR imaging method for cylinder target [C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan, 2019: 2921–2924. DOI: 10.1109/IGARSS.2019. 8898372.

    Google Scholar 

  14. YANG Zhi-liu, YANG Zhu, DONG Shan, CHEN Liang. Implementation of memory architecture for real-time spaceborne SAR imaging system [C]// IET International Radar Conference 2015. Hangzhou, 2015: 1–5. DOI: 10.1049/cp.2015.1298.

    Google Scholar 

  15. ZHAN Xue-li, WANG Yan-fei, LIU Bi-dan, WANG Chao. Research on overlapped subaperture real-time imaing algorithm for pulse compression airborne strip SAR system [J]. Journal of Radars, 2015, 4(2): 199–208. DOI: 10.12000/JR14126. (in Chinese)

    Google Scholar 

  16. QI Sheng-xiang, REN Jian, GU Li-hua. The application research of microwave nondestructive testing and imaging based on co-k algorithm [C]// International Conference on Digital Image Processing, 2017. DOI: 10.1117/12.2282812.

    Google Scholar 

  17. HUANG Yan, LI Chun-sheng, CHEN Jie, ZHOU Yin-qing. Refined chirp scaling algorithm for high resolution spaceborne SAR imaging [J]. Acta Electronica Sinica, 2000 (3): 35–38. DOI: 10.3321/j.issn:0372-2112.2000.03.010. (in Chinese)

    Google Scholar 

  18. RANEY R K, RUNGE H, BAMLER R, CUMMING I G, WONG F H. Precision SAR processing using chirp scaling [J]. IEEE Transactions on Geoscience & Remote Sensing, 1994, 32(4): 786–799. DOI: 10.1109/36.298008.

    Article  Google Scholar 

  19. LI B, LI C, XIE Y, CHEN L, SHI H, DENG Y A SoPC based fixed point system for spaceborne SAR real-time imaging processing [C]// 2018 IEEE High Performance Extreme Computing Conference (HPEC). Waltham, MA, 2018: 1–6. DOI: 10.1109/HPEC.2018.8547564.

    Google Scholar 

  20. MALANOWSKI M, KRAWCZYK G, SAMCZYNSKI P. Real-time high-resolution SAR processor using CUDA technology [C]// Radar Symposium. IEEE, 2013: 673–678.

    Google Scholar 

  21. PFITZNER M, CHOLEWA F, PIRSCH P. FPGA based Architecture for real-time SAR processing with integrated motion compensation [C]// 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Tsukuba, 2013: 521–524. DOI: 10.1088/1742-6596/478/1/012001.

    Google Scholar 

  22. ZHANG Ning-yu, YAO Di, LI Cong-xin, JING Kai. A real-time processing system for airborne forward-squint SAR based on DSP [C]// IET International Radar Conference 2015. Hangzhou, China, 2015: 1–5. DOI: 10.1049/cp.2015.1441.

    Google Scholar 

  23. YAN L, BOYA Z, LIANG C, HE C, TAO W. The implement of spaceborne SAR imaging system [C]// IET International Radar Conference 2015. Hangzhou, China, 2015: 1–4. DOI: 10.1049/cp.2015.1317. DOI: 10.1049/cp.2015.1358.

    Google Scholar 

  24. LI C, JIE L, CUI L, YAO D. The squinted-looking SAR real-time imaging based on multi-core DSP [C]// IET International Radar Conference 2015. Hangzhou, China, 2015: 1–4. DOI: 10.1049/cp.2015.1358.

    Google Scholar 

  25. SUN Ying-qin, LIU Wei, YAO Di, ZHANG Wei-tao. A design method for SAR real-time processing system based on Super-step [C]// IET International Radar Conference 2013. Xi’an, China, 2013: 1–5. DOI: 10.1049/cp.2013.0410.

    Google Scholar 

  26. JIN Ting, WANG Hong-xian, LIU Hong-wei. Design of A flexible high- performance real-time SAR signal processing system [C]// 2016 IEEE 13th International Conference on Signal Processing (ICSP). Chengdu, China, 2016: 513–517. DOI: 10.1109/ICSP.2016.7877887.

    Chapter  Google Scholar 

  27. SUN Ying-qin, YANG Jian, YAO Di. An evaluation system for SAR real-time processing system [C]// IET International Radar Conference 2013. Xi’an, China, 2013: 1–4. DOI: 10.1049/cp.2013.0408.

    Google Scholar 

  28. WEI Li, LI Guo-yuan, ZHANG Hou-xiang. A real-time SAR extended object simulator based on FPGA [C]// IEEE International Conference on Signal Processing. IEEE, 2017: 1498–1503. DOI: 10.1109/ICSP2016.7878076.

    Google Scholar 

  29. CAO Hai-yang, ZHU Dai-yin, ZHANG Jin-dong. FPGA implementation of two SAR autofocus algorithms [C]// IEEE International Conference on Dependable. IEEE, 2014: 148–152.

    Google Scholar 

  30. NI Chao, HU Xiao, ZHANG Zhi-min, ZHAO Feng-jun. Spaceborne SAR real-time echo simulation platform based on VPX [J]. Journal of Electronics (China), 2014, 31(3): 193–199. DOI: CNKI:SUN:JOEL.0.2014-03-004.

    Article  Google Scholar 

  31. LI Bing-yi, XIE Yi-zhuang, LIU Xiao-ning, DENG Yi. A new reconfigurable methodology to implement the shift-and-correlate (SAC) algorithm for real-time SAR autofocusing [C]// IET International Radar Conference 2015, Hangzhou, China, 2015: 1–6. DOI: 10.1049/cp.2015.1426.

    Google Scholar 

  32. CHEN Yang, HE Chen. A efficient design of A real-time FFT architecture based on FPGA [C]// IET International Radar Conference 2013. Xi’an, China, 2013: 1–5. DOI: 10.1049/cp. 2013.0368.

    Google Scholar 

  33. GU Cheng-fei, LI Xiang-yang, CHANG Wen-ge, JIA Gao-wei, TIAN Hai-shan. Matrix transposition based on TMS320C6678 [C]// Millimeter Waves. IEEE, 2012. DOI: 10.1109/GSMM.2012.6314000.

    Google Scholar 

  34. LI W, XU Z, ZHU D. The FPGA Implementation of real-time spotlight SAR imaging [C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, 2018: 6703–6706. DOI: 10.1109/IGARSS.2018.8518187.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang PhD  (杨军).

Additional information

Foundation item: Project(2017YFC 1405600) supported by the National Key R&D Program of China; Project(18JK05032) supported by the Scientific Research Project of Education Department of Shaanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cao, Yd., Sun, Gc. et al. GF-3 data real-time processing method based on multi-satellite distributed data processing system. J. Cent. South Univ. 27, 842–852 (2020). https://doi.org/10.1007/s11771-020-4335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4335-9

Keywords

关键词

Navigation