Skip to main content
Log in

Kinetic of CO2 absorption and carbamate formation in aqueous solutions of diethanolamine

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The absorption rates of CO2 into aqueous solutions of Diethanolamine (DEA) with varying concentrations from 0.2 to 4M and temperature range from 293 to 323 K were measured by using a laboratory stirred reactor. The CO2 partial pressure was varied in a range that the reaction would occur in pseudo first order regime. Experimental data were analyzed and the kinetic parameters associated with the reaction were determined. The activation energy for the deprotonation of the intermediate zwitterion was estimated at about 11.4 kcal/mol. The contribution of carbamate formation to the overall absorbed CO2 was experimentally evaluated and found to be of the order of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Blanc and G. Demarais, Int. Chem. Eng., 24(1), 43 (1984).

    Google Scholar 

  2. E. B. Rinker, S. S. Ashour and O. C. Sandall, Ind. Eng. Chem. Res., 35, 1107 (1996).

    Article  CAS  Google Scholar 

  3. P. M. M. Blauwhoff and W. P. M. Van Swaaij, Chem. Eng. Sci., 38,1411 (1983).

    Article  CAS  Google Scholar 

  4. M. Caplow, J. Am. Chem. Soc., 90, 6795 (1968).

    Article  CAS  Google Scholar 

  5. P. V. Danckwerts, Chem. Eng. Sci., 34, 443 (1979).

    Article  CAS  Google Scholar 

  6. G. F. Versteeg, L. A. Van Dijck and W. P. M. Van Swaaij, Chem. Eng., 144, 113 (1996).

    CAS  Google Scholar 

  7. M. Caplow, J. Am. Chem. Soc., 90, 6795 (1968).

    Article  CAS  Google Scholar 

  8. B. R. W. Pinsent, L. Pearson and F. G. W. Roughton, Trans. Faraday Soc., 52, 1512 (1956).

    Article  CAS  Google Scholar 

  9. P. M. M. Blauwhoff and W. P. M. Van Swaaij, Chem. Eng. Sci., 38,1411 (1983).

    Article  CAS  Google Scholar 

  10. S. S. Laddha, J. M. Diaz and P. V. Danckwerts, Chem. Eng. Sci., 36,229 (1981).

    Article  Google Scholar 

  11. G. F. Versteeg and W. P. M. Van Swaaij, J. Chem. Eng. Data., 33,29 (1988).

    Article  CAS  Google Scholar 

  12. E. D. Snijder, M. J. M. Riele, G. F. Versteeg and W. P. M. Van Swaaij, J. Chem. Eng. Data., 38, 475 (1993).

    Article  CAS  Google Scholar 

  13. G. F. Versteeg, L. A. J. Van Dijck and W. P. M. Van Swaaij, Chem. Eng. Sci., 144, 113 (1996).

    CAS  Google Scholar 

  14. F. R. S. Taylor, Proc. R. Soc. London., A219, 186 (1953).

    Google Scholar 

  15. D. A. Glasscock, J. E. Critchfield and G. T. Rochelle, Chem. Eng. Sci., 46, 2829 (1991).

    Article  CAS  Google Scholar 

  16. Handbook of Chemistry and physics 83rd Edition (2003).

  17. P. V. Danckwerts, Gas liquid reaction, Mcgraw-Hill, New York (1970).

    Google Scholar 

  18. W. G. Whitman, Chem. Met. Engng., 29, 146 (1923).

    CAS  Google Scholar 

  19. S. Hatta, Technol. Repts., Tohoku Imp University, 9 (1928).

  20. C. Alvarez-Fuster, N. Midoux, A. Laurent and J.-C. Charpentier, Chem. Eng. Sci., 35, 1717 (1980).

    Article  CAS  Google Scholar 

  21. A. Benamor and M. K. Aroua, Korean J. Chem. Eng., 24, 16 (2007).

    Article  CAS  Google Scholar 

  22. M. Z. Haji-Sulaiman, M. K. Aroua and A. Benamor, Trans IChemE., 76,Part A, 961 (1998).

    Article  CAS  Google Scholar 

  23. A. Benamor and M. K. Aroua, Fluid Phase Equilibria., 231, 150 (2005).

    Article  CAS  Google Scholar 

  24. M. Z. Haji-Sulaiman, M. K. Aroua and M. I. Pervez, Gas. Sep. Pur., 10, 13 (1996).

    Article  CAS  Google Scholar 

  25. R. J. Little, G. F. Versteeg and W. P. M. Van Swaaij, Chem. Eng. Sci., 47, 2037 (1992).

    Article  Google Scholar 

  26. E. Sada, H. Kumazawa and M. A. Butt, J. Chem. Eng. Data, 22,277 (1977).

    Article  CAS  Google Scholar 

  27. E. Sada, H. Kumazawa and M. A. Butt, Chem. Eng. Sci., 31, 839 (1976).

    Article  CAS  Google Scholar 

  28. N. Haimour, J. Chem. Eng. Data, 35, 177 (1990).

    Article  CAS  Google Scholar 

  29. E. B. Rinker and O. C. Sandall, Chem. Eng. Com., 144, 85 (1996).

    Article  CAS  Google Scholar 

  30. T.-C. Tsai, J.-J. Kho, M.-H. Wang, C.-Y. Lin and M.-H. Li, J. Chem. Eng. Data, 45, 341 (2000).

    Article  CAS  Google Scholar 

  31. M. H. Oyvaar, R.W. J. Morssinkhof and K. R. Westerterp, J. Chem. Eng. Data, 34, 77 (1989).

    Article  Google Scholar 

  32. G. F. Versteeg and M.H. Oyevaar, Chem. Eng. Sci., 44, 1264 (1989).

    Article  CAS  Google Scholar 

  33. G. F. Versteeg, P. M. Blauwhoff and W. P. M. Van Swaaij, Chem. Eng. Sci., 42, 1103 (1987).

    Article  CAS  Google Scholar 

  34. G. J. Browning and R. H. Weiland, J. Chem. Eng. Data, 39, 817 (1994).

    Article  CAS  Google Scholar 

  35. M. H. Li and W. C. Lee, J. Chem. Eng. Data, 41(3), 551 (1996).

    Article  CAS  Google Scholar 

  36. E. Sada, H. Kumazawa, Z. Q. Han and M.A. Butt, AIChE J., 31, 1297 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kheireddine Aroua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benamor, A., Ali, B.S. & Aroua, M.K. Kinetic of CO2 absorption and carbamate formation in aqueous solutions of diethanolamine. Korean J. Chem. Eng. 25, 451–460 (2008). https://doi.org/10.1007/s11814-008-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0077-3

Key words

Navigation