Skip to main content
Log in

Microfluidic extraction using two phase laminar flow for chemical and biological applications

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We review the state of the art in microfluidic separation technique based two-phase laminar flow with an application focus on chemical and biological sample. As we describe herein, two-phase laminar flow in the microfluidic extraction has several biological and engineering advantages over other methods including high reproducibility, biocompatibility, and selectivity. We review advances in applications of two-phase laminar flow and examine key parameters such as flow rate, phase composition, and surface charge property, how these can affect extract performance with the technology including microfluidic separation system. A special technology focus is given to emerging novel integrative microfluidic extraction, which aims to merge aqueous phase laminar flow and electric field technologies into simple packages. We conclude with a brief discussion of some of the emerging challenges in the field and some of the approaches that are likely to enhance their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Albertsson, Nature, 177, 771 (1956).

    Article  CAS  Google Scholar 

  2. H. Walter and E. J. Krob, J. Chromatography, 479, 307 (1989).

    Article  CAS  Google Scholar 

  3. H. Walter, E. J. Krob and D. E. Brooks, Biochemistry, 15, 2959 (1976).

    Article  CAS  Google Scholar 

  4. M. Pinilla, J. Delafuente, A. I. Garciaperez, P. Jimeno, P. Sancho and J. Luque, J. Chromatography A, 668, 165 (1994).

    Article  CAS  Google Scholar 

  5. J. Benavides, O. Aguilar, B. H. Lapizco-Encinas and M. Rito-Palomares, Chemical Engineering & Technology, 31, 838 (2008).

    Article  CAS  Google Scholar 

  6. Y. Akama, M. Ito and S. Tanaka, Talanta, 53, 645 (2000).

    Article  CAS  Google Scholar 

  7. Y. Akama and A. Sali, Talanta, 57, 681 (2002).

    Article  CAS  Google Scholar 

  8. N. Yoshikuni, T. Baba, N. Tsunoda and K. Oguma, Talanta, 66, 40 (2005).

    Article  CAS  Google Scholar 

  9. M. T. Cunha, M. J. L. Costa, C. R. C. Calado, L. P. Fonseca, M. R. Aires-Barros and J. M. S. Cabral, J. Biotechnology, 100, 55 (2003).

    Article  CAS  Google Scholar 

  10. H. Everberg, U. Sivars, C. Emanuelsson, C. Persson, A.K. Englund, L. Haneskog, P. Lipniunas, M. Jornten-Karlsson and F. Tjerneld, J. Chromatography A, 1029, 113 (2004).

    Article  CAS  Google Scholar 

  11. H.O. Johansson, M. Ishii, M. Minaguti, E. Feitosa, T. C.V. Penna and A. Pessoa, Sep. Purif. Technol., 62, 166 (2008).

    Article  CAS  Google Scholar 

  12. P. A. J. Rosa, A. M. Azevedo, I. F. Ferreira, S. Sommerfeld, W. Backer and M. R. Aires-Barros, J. Chromatography A, 1216, 8741 (2009).

    Article  CAS  Google Scholar 

  13. R. J. Meagher, Y. K. Light and A.K. Singh, Lab on a Chip, 8, 527 (2008).

    Article  CAS  Google Scholar 

  14. A. Kumar, M. Kamihira, I.Y. Galaev, B. Mattiasson and S. Iijima, Biotechnol. Bioeng., 75, 570 (2001).

    Article  CAS  Google Scholar 

  15. A. J. Bradley and M. D. Scott, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 807, 163 (2004).

    Article  CAS  Google Scholar 

  16. A. Frerix, M. Muller, M. R. Kula and J. Hubbuch, Biotechnol. Appl. Biochem., 42, 57 (2005).

    Article  CAS  Google Scholar 

  17. C. Kepka, J. Rhodin, R. Lemmens, F. Tjerneld and P. E. Gustavsson, J. Chromatography A, 1024, 95 (2004).

    Article  CAS  Google Scholar 

  18. S. C. Ribeiro, G. A. Monteiro, J. M. S. Cabral and D. M. F. Prazeres, Biotech. Bioen., 78, 376 (2002).

    Article  CAS  Google Scholar 

  19. I. P. Trindade, M. M. Diogo, D. M. F. Prazeres and J. C. Marcos, J. Chromatography A, 1082, 176 (2005).

    Article  CAS  Google Scholar 

  20. A. Frerix, M. Schonewald, P. Geilenkirchen, M. Muller, M. R. Kula and J. Hubbuch, Langmuir, 22, 4282 (2006).

    Article  CAS  Google Scholar 

  21. A. Frerix, P. Geilenkirchen, M. Muller, M. R. Kula and J. Hubbuch, Biotechnol. Bioeng., 96, 57 (2007).

    Article  CAS  Google Scholar 

  22. G. A. Gomes, A. M. Azevedo, M.R. Aires-Barros and D. M. F. Prazeres, Sep. Purif. Technol., 65, 22 (2009).

    Article  CAS  Google Scholar 

  23. F. Mashayekhi, A. S. Meyer, S. A. Shiigi, V. Nguyen and D. T. Kamei, Biotechnol. Bioeng., 102, 1613 (2009).

    Article  CAS  Google Scholar 

  24. F. Luechau, T. C. Ling and A. Lyddiatt, Process Biochem., 45, 1432 (2010).

    Article  CAS  Google Scholar 

  25. C. Kepka, R. Lemmens, J. Vasi, T. Nyhammar and P. E. Gustavsson, J. Chromatography A, 1057, 115 (2004).

    Article  CAS  Google Scholar 

  26. E. Z. Lee, Y. S. Huh, Y. S. Jun, H. J. Won, Y. K. Hong, T. J. Park, S.Y. Lee and W. H. Hong, J. Chromatography A, 1187, 11 (2008).

    Article  CAS  Google Scholar 

  27. J. R. SooHoo and G. M. Walker, Biomedical Microdevices, 11, 323 (2009).

    Article  Google Scholar 

  28. M. Tsukamoto, S. Taira, S. Yamamura, Y. Morita, N. Nagatani, Y. Takamura and E. Tamiya, Analyst, 134, 1994 (2009).

    Article  CAS  Google Scholar 

  29. K. H. Nam, W. J. Chang, H. Hong, S. M. Lim, D. I. Kim and Y. M. Koo, Biomedical Microdevices, 7, 189 (2005).

    Article  Google Scholar 

  30. G. D. Rodrigues, L. R. de Lemos, L. H. M. da Silva, M. D. H. da Silva, L.A. Minim and J. S. D. Coimbra, Talanta, 80, 1139 (2010).

    Article  CAS  Google Scholar 

  31. P. J. Flory, J. Chem. Phys., 10 (1942).

  32. M. L. Huggins, J. Chem. Phys., 46 (1942).

  33. H. Walter, D. E. Brooks and D. Fisher, Partitioning in Aqueous Two Phase Systems; Theory, Methods, Uses, and Applications to Biotechnology, Academic Press, Inc. (1985).

  34. E. Edmond and A. G. Ogston, Biochem. J., 109 (1968).

  35. C. A. Haynes, R.V. Beynon, R. S. King, H.W. Blanch and J. M. Prausnitz, J. Phys. Chem., 93, 5612 (1989).

    Article  CAS  Google Scholar 

  36. R. S. King, H.W. Blanch and J. M. Prausnitz, AIChE J., 34, 1585 (1988).

    Article  CAS  Google Scholar 

  37. H. J. Cabezas, M. Kabiri-Badr and D. C. Szlag, Bioseparation, 1, 227 (1990).

    CAS  Google Scholar 

  38. H. Walter, G. Johansson and D. E. Brooks, Anal. Biochem., 197, 1 (1991).

    Article  CAS  Google Scholar 

  39. P. D. Grossman and J. L. Gainer, Biotechnol. Progress, 4, 6 (1988).

    Article  CAS  Google Scholar 

  40. C.W. Kim, Vol. Ph. D., MIT (1987).

  41. C. H. Kang and S. I. Sandler, Fluid Phase Equilib., 38 (1987).

  42. R. Hatti-Kaul, Ed., Aqueous Two-Phase Systems, Methods and Protocols, Humana Press Inc., Totowa (2000).

    Google Scholar 

  43. J. N. Baskir, T. A. Hatton and U.W. Suter, Macromolecules, 20, 1300 (1987).

    Article  CAS  Google Scholar 

  44. G. Johansso, Acta Chemica Scandinavica Series B-Organic Chemistry and Biochemistry B, 28, 873 (1974).

    Google Scholar 

  45. B. A. Andrews and J. A. Asenjo, Sep. Sci. Technol., 45, 2165 (2010).

    Article  CAS  Google Scholar 

  46. H. Xiao, D. Liang, G. C. Liu, M. Guo, W. L. Xing and J. Cheng, Lab on a Chip, 6, 1067 (2006).

    Article  CAS  Google Scholar 

  47. M. Yamada, V. Kasim, M. Nakashima, J. Edahiro and M. Seki, Biotechnol. Bioeng., 88, 489 (2004).

    Article  CAS  Google Scholar 

  48. M. Surmeian, M. N. Slyadnev, H. Hisamoto, A. Hibara, K. Uchiyama and T. Kitamori, Anal. Chem., 74, 2014 (2002).

    Article  CAS  Google Scholar 

  49. G. Munchow, F. Schonfeld, S. Hardt and K. Graf, Langmuir, 24, 8547 (2008).

    Article  Google Scholar 

  50. X.A. Mu, Q. L. Liang, P. Hu, K.N. Ren, Y. M. Wang and G.A. Luo, Microfluidics and Nanofluidics, 9, 365 (2010).

    Article  CAS  Google Scholar 

  51. X. J. Feng, W. Du, Q. M. Luo and B. F. Liu, Analytica Chimica Acta, 650, 83 (2009).

    Article  CAS  Google Scholar 

  52. Y. Feng and M. Wang, Progress Chem., 18, 966 (2006).

    CAS  Google Scholar 

  53. T. Maruyama, H. Matsushita, J. Uchida, F. Kubota, N. Kamiya and M. Goto, Anal. Chem., 76, 4495 (2004).

    Article  CAS  Google Scholar 

  54. A. Hibara, M. Nonaka, H. Hisamoto, K. Uchiyama, Y. Kikutani, M. Tokeshi and T. Kitamori, Anal. Chem., 74, 1724 (2002).

    Article  CAS  Google Scholar 

  55. T. Maruyama, J. Uchida, T. Ohkawa, T. Futami, K. Katayama, K. Nishizawa, K. Sotowa, F. Kubota, N. Kamiyaa and M. Goto, Lab on a Chip, 3, 308 (2003).

    Article  CAS  Google Scholar 

  56. A. Hibara, M. Tokeshi, K. Uchiyama, H. Hisamoto and T. Kitamori, Anal. Sci., 17, 89 (2001).

    Article  CAS  Google Scholar 

  57. A. Smirnova, K. Shimura, A. Hibara, M. A. Proskurnin and T. Kitamori, Anal. Sci., 23, 103 (2007).

    Article  Google Scholar 

  58. V. Reddy and J. D. Zahn, J. Colloid Interf. Sci., 286, 158 (2005).

    Article  CAS  Google Scholar 

  59. A. Hibara, S. Iwayama, S. Matsuoka, M. Ueno, Y. Kikutani, M. Tokeshi and T. Kitamori, Analy. Chem., 77, 943 (2005).

    Article  CAS  Google Scholar 

  60. Y. S. Huh, K. Yang, Y. K. Hong, Y. S. Jun, W. H. Hong and D. H. Kim, Process Biochem., 42, 649 (2007).

    Article  CAS  Google Scholar 

  61. Y. S. Huh, T. J. Park, K. Yang, E. Z. Lee, Y. K. Hong, S.Y. Lee, D. H. Kim and W. H. Hong, Ultramicroscopy, 108, 1365 (2008).

    Article  CAS  Google Scholar 

  62. A. Negrete, T. C. Ling and A. Lyddiatt, J. Chromatography B-Analytical Technologies in the Biomedical and Life Sci., 854, 13 (2007).

    Article  CAS  Google Scholar 

  63. Y. T. Wu and Z. Q. Zhu, Chem. Eng. Sci., 54, 433 (1999).

    Article  CAS  Google Scholar 

  64. T. Tagawa, S. Aljbour, M. Matouq and H. Yamada, Chem. Eng. Sci., 62, 5123 (2007).

    Article  CAS  Google Scholar 

  65. T. Maruyama, T. Kaji, T. Ohkawa, K. Sotowa, H. Matsushita, F. Kubota, N. Kamiya, K. Kusakabe and M. Goto, Analyst, 129, 1008 (2004).

    Article  CAS  Google Scholar 

  66. T. Yamakawa, H. Oshite, K. Katayama, T. Futami, T. Ohkawa and K. Nishizawa, Kagaku Kogaku Ronbunshu, 30, 95 (2004).

    Article  CAS  Google Scholar 

  67. A.A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, Microfluidics and Nanofluidics, 7, 217 (2009).

    Article  CAS  Google Scholar 

  68. Y. C. Zhao, G.W. Chen and Q. Yuan, AIChE J., 53, 3042 (2007).

    Article  CAS  Google Scholar 

  69. Y. S. Huh, C. M. Jeong, H. N. Chang, S.Y. Lee, W. H. Hong and T. J. Park, Biomicrofluidics, 4 (2010).

  70. J. H. Liu, X. Chen, Z. Z. Shao and P. Zhou, J. Appl. Polymer Sci., 90, 1108 (2003).

    Article  CAS  Google Scholar 

  71. H. Walter, E. J. Krob and A. Pedram, Cell Biophysics, 4, 273 (1982).

    Article  CAS  Google Scholar 

  72. D. F. Gerson and D. Scheer, Biochimica Et Biophysica Acta, 602, 506 (1980).

    Article  CAS  Google Scholar 

  73. D. Huh, J. H. Bahng, Y. B. Ling, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg and S. Takayama, Anal. Chem., 79, 1369 (2007).

    Article  CAS  Google Scholar 

  74. M. Yamada, M. Nakashima and M. Seki, Anal. Chem., 76, 5465 (2004).

    Article  CAS  Google Scholar 

  75. X. L. Zhang, J. M. Cooper, P. B. Monaghan and S. J. Haswell, Lab on a Chip, 6, 561 (2006).

    Article  CAS  Google Scholar 

  76. M. Yamada and M. Seki, Lab on a Chip, 5, 1233 (2005).

    Article  CAS  Google Scholar 

  77. M. Yamada and M. Seki, Analy. Chem., 78, 1357 (2006).

    Article  CAS  Google Scholar 

  78. R. D. Jaggi, R. Sandoz and C. S. Effenhauser, Microfluidics and Nanofluidics, 3, 47 (2007).

    Article  Google Scholar 

  79. S. Yang, A. Undar and J. D. Zahn, Lab on a Chip, 6, 871 (2006).

    Article  CAS  Google Scholar 

  80. S. S. Shevkoplyas, T. Yoshida, L. L. Munn and M.W. Bitensky, Anal. Chem., 77, 933 (2005).

    Article  CAS  Google Scholar 

  81. K. Ueno, H. B. Kim and N. Kitamura, Anal. Sci., 19, 391 (2003).

    Article  CAS  Google Scholar 

  82. K. Hannig, J. Chromatography, 159, 183 (1978).

    Article  CAS  Google Scholar 

  83. D. E. Raymond, A. Manz and H. M. Widmer, Analy. Chem., 66, 2858 (1994).

    Article  CAS  Google Scholar 

  84. D. E. Raymond, A. Manz and H. M. Widmer, Analy. Chem., 68, 2515 (1996).

    Article  CAS  Google Scholar 

  85. B. R. Fonslow, V. H. Barocas and M. T. Bowser, Anal. Chem., 78, 5369 (2006).

    Article  CAS  Google Scholar 

  86. C. X. Zhang and A. Manz, Anal. Chem., 75, 5759 (2003).

    Article  CAS  Google Scholar 

  87. Y. Xu, C. X. Zhang, D. Janasek and A. Manz, Lab on a Chip, 3, 224 (2003).

    Article  CAS  Google Scholar 

  88. K. Macounova, C. R. Cabrera and P. Yager, Anal. Chem., 73, 1627 (2001).

    Article  CAS  Google Scholar 

  89. C. R. Cabrera and P. Yager, Electrophoresis, 22, 355 (2001).

    Article  CAS  Google Scholar 

  90. H. Lu, S. Gaudet, M. A. Schmidt and K. F. Jensen, Anal. Chem., 76, 5705 (2004).

    Article  CAS  Google Scholar 

  91. G. Munchow, S. Hardt, J. P. Kutter and K. S. Drese, Lab on a Chip, 7, 98 (2007).

    Article  CAS  Google Scholar 

  92. W. M. Clark, Chemtech, 22, 425 (1992).

    CAS  Google Scholar 

  93. M. A. Marando and W. M. Clark, Sep. Sci. Technol., 28, 1561 (1993).

    Article  CAS  Google Scholar 

  94. C.W. Theos and W. M. Clark, Appl. Biochem. and Biotechnol., 54, 143 (1995).

    Article  CAS  Google Scholar 

  95. M. L. Levine and M. Bier, Electrophoresis, 11, 605 (1990).

    Article  CAS  Google Scholar 

  96. M. L. Levine, H. Cabezas and M. Bier, J. Chromatography, 607, 113 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hi Hong.

Additional information

Prof. Won Hi Hong is a professor in the Department of Chemical and Biomolecular Engineering at KAIST. He received BS from Seoul National University, Dipl.-Ing and Dr.-Ing at Technical University Berlin, Germany. From 1980 to 1984, he worked as a researcher at TU Berlin and then he started as a senior researcher at KAIST in 1984 before joining as an assistant professor at KAIST. He received several awards for his excellent research activities form the Korean Society of Clean Technology, the Korean Institute of Chemical Engineers and the Ministry of Knowledge Economy. He is a member of KIChE, KSCT, VDI, ACS. His current professional fields of interest include extraction/purification of organic acid, CO2 absorption, direct methanol fuel cell, advanced nanomaterial and microfludic system for biosensor, and synthesis and application of nanostructured carbon nitride. As many as about 160 journal papers and 16 patents of his research achievements have been published so far.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huh, Y.S., Jeon, S.J., Lee, E.Z. et al. Microfluidic extraction using two phase laminar flow for chemical and biological applications. Korean J. Chem. Eng. 28, 633–642 (2011). https://doi.org/10.1007/s11814-010-0533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0533-8

Key words

Navigation