Skip to main content
Log in

Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study is the stage of developing a phenol detection electrochemical sensor. Phenol is one of the organic pollutants harmful to human life and ecosystems. The development of this sensor was carried out by studying the use of TiO2 anatase as a modifier of graphene electrodes. The mass of TiO2 anatase was varied, while the mass of graphene and paraffin was fixed. The results showed that the TiO2 mass of 1.0 g was the best mass as a graphene electrode modifier. The use of this mass increases the oxidation current (Ipa) of phenol by 450 A, which is observed at an oxidation potential (Epa) of −0.30 V. The presence of interfering ions such as K+, Fe2+, and OH can decrease the measurement current. However, based on the %RSD value, it shows that the performance of TiO2-graphene is in a good category, where the %RSD value obtained is 0.6%. TiO2-graphene electrodes can be used repeatedly for 12 days. Overall, this work demonstrates the potential of TiO2-graphene electrodes as electrode candidates for electrochemical-based phenol sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Farzadkia, Y. Dadban Shahamat, S. Nasseri, A. H. Mahvi, M. Gholami and A. Shahryari, J. Eng., 520929, 1 (2014).

    Google Scholar 

  2. Y. D. Shahamat, M. Farzadkia, S. Nasseri, A. H. Mahvi, M. Gholami and A. Esrafli, J. Environ. Heal. Sci. Eng., 12, 1 (2014).

    Article  Google Scholar 

  3. Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao and Z. Li, Chem. Eng. J., 337, 351 (2017).

    Article  Google Scholar 

  4. S. B. Slamet, A. Rita and S. Zulaina, J. Teknol., 303 (2006).

  5. Y. Zhang, M. Zhang, Q. Wei, Y. Gao, L. Guo, K. A. Al-Ghanim, S. Mahboob and X. Zhang, Sensors, 16, 535 (2016).

    Article  CAS  Google Scholar 

  6. D. Wibowo, Ruslan, Maulidiyah and M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng., 267, 012007 (2017).

    Article  Google Scholar 

  7. Hikmawati, A. H. Watoni, D. Wibowo, Maulidiyah and M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng., 267, 012005 (2017).

    Article  Google Scholar 

  8. M. Maulidiyah, T. Azis, L. Lindayani, D. Wibowo, L. O. A. Salim, A. Aladin and M. Nurdin, J. Electrochem. Sci. Technol., 10, 394 (2019).

    Article  CAS  Google Scholar 

  9. M. Nurdin, M. Maulidiyah, L. O. A. Salim, M. Z. Muzakkar and A. A. Umar, Microchem. J., 145, 756 (2018).

    Article  Google Scholar 

  10. M. Nurdin, O. A. Prabowo, Z. Arham, D. Wibowo, M. Maulidiyah, S. K. M. Saad and A. A. Umar, Surf. Interfaces, 16, 108 (2019).

    Article  CAS  Google Scholar 

  11. M. Nurdin, Z. Arham, J. Rasyid, M. Maulidiyah, F. Mustapa, H. Sosidi, R. Ruslan and L. O. A. Salim, J. Phys. Conf. Ser., 1763, 012067 (2021).

    Article  CAS  Google Scholar 

  12. S. M. Khopkar, Basic concepts of analytical chemistry, New Age International (1998).

  13. A. J. Bard and L. R. Faulkner, Electrochem. Methods, 2, 482 (2001).

    Google Scholar 

  14. X. Wang, L. Zhi and K. Müllen, Nano Lett., 8, 323 (2008).

    Article  CAS  Google Scholar 

  15. M. Nurdin, L. Agusu, A. A. M. Putra, M. Maulidiyah, Z. Arham, D. Wibowo, M. Z. Muzakkar and A. A. Umar, J. Phys. Chem. Solids, 131, 104 (2019).

    Article  CAS  Google Scholar 

  16. M. Nurdin, L. O. A. N. Ramadhan, D. Darmawati, M. Maulidiyah and D. Wibowo, J. Coatings Technol. Res., 15, 395 (2018).

    Article  CAS  Google Scholar 

  17. Maulidiyah, T. Azis, A. T. Nurwahidah, D. Wibowo and M. Nurdin, Environ. Nanotechnology, Monit. Manag., 8, 103 (2017).

    Article  Google Scholar 

  18. M. Nurdin, A. Zaeni, E. T. Rammang, M. Maulidiyah and D. Wibowo, Anal. Bioanal. Electrochem., 9, 480 (2017).

    CAS  Google Scholar 

  19. M. Natsir, Y. I. Putri, D. Wibowo, M. Maulidiyah, L. O. A. Salim, T. Azis, C. M. Bijang, F. Mustapa, I. Irwan, Z. Arham and M. Nurdin, J. Inorg. Organomet. Polym. Mater., 31, 3378 (2021).

    Article  CAS  Google Scholar 

  20. M. Nurdin, Maulidiyah, A. H. Watoni, N. Abdillah and D. Wibowo, Int. J. ChemTech Res., 9, 483 (2016).

    CAS  Google Scholar 

  21. M. Nurdin, A. Zaeni, Maulidiyah, M. Natsir, A. Bampe and D. Wibowo, Orient. J. Chem., 32, 2713 (2016).

    Article  CAS  Google Scholar 

  22. N. Tavakkoli, N. Soltani, H. Salavati and M. Talakoub, J. Taiwan Inst. Chem. Eng., 83, 50 (2018).

    Article  CAS  Google Scholar 

  23. S. Bakardjieva, J. Šubrt, V. Štengl, M. J. Dianez and M. J. Sayagues, Appl. Catal. B Environ., 58, 193 (2005).

    Article  CAS  Google Scholar 

  24. J. Tashkhourian, S. F. N. Ana, S. Hashemnia and M. R. Hormozi-Nezhad, J. Solid State Electrochem., 17, 157 (2013).

    Article  CAS  Google Scholar 

  25. P. Srinivasu, S. P. Singh, A. Islam and L. Han, Adv. Optoelectron., 539382, 1 (2011).

    Google Scholar 

  26. A. Yasmin, J. J. Luo and I. M. Daniel, Compos. Sci. Technol., 66, 1179 (2006).

    Google Scholar 

  27. C. Basheer, J. Chem., 456586, 1 (2013).

    Google Scholar 

  28. D. Wibowo, Y. Sufandy, I. Irwan, T. Azis, M. Maulidiyah and M. Nurdin, J. Mater. Sci. Mater. Electron., 28, 14375 (2020).

    Article  Google Scholar 

  29. J. Wang, Analytical electrochemistry, John Wiley & Sons (2006).

  30. M. Ali Zolfigol and A. G. Choghamarani, Phosphorus. Sulfur. Silicon Relat. Elem., 178, 1623 (2003).

    Article  Google Scholar 

  31. M. Nurdin, T. Azis, M. Maulidiyah, A. Aladin, N. A. Hafid, L. O. A. Salim and D. Wibowo, IOP Conf. Ser. Mater. Sci. Eng., 367, 012048 (2018).

    Article  Google Scholar 

  32. M. Maulidiyah, I. B. P. Wijawan, D. Wibowo, A. Aladin, B. Hamzah and M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng., 367, 012060 (2018).

    Article  Google Scholar 

  33. N. Belkhamsa, L. Ouattara and M. Ksibi, J. Electrochem. Soc., 162, B212 (2015).

    Article  CAS  Google Scholar 

  34. P. Bühlmann, E. Pretsch and E. Bakker, Chem. Rev., 98, 1593 (1998).

    Article  Google Scholar 

  35. E. Bakker, P. Bühlmann and E. Pretsch, Chem. Rev., 97, 3083 (1997).

    Article  CAS  Google Scholar 

  36. Maulidiyah, D. S. Tribawono, D. Wibowo and M. Nurdin, Anal. Bioanal. Electrochem., 8, 761 (2016).

    CAS  Google Scholar 

  37. J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri and X. Sun, Adv. Mater., 28, 215 (2016).

    Article  CAS  Google Scholar 

  38. L. Y. Heng and E. A. H. Hall, Anal. Chim. Acta, 443, 25 (2001).

    Article  CAS  Google Scholar 

  39. T. Mitsuyama, A. Tsutsumi, T. Hata, K. Ikeue and M. Machida, Bull. Chem. Soc. Jpn., 81, 401 (2008).

    Article  CAS  Google Scholar 

  40. L. J. Criscenti and D. A. Sverjensky, Am. J. Sci., 299, 828 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Ministry of Education and Culture of the Republic of Indonesia under the Applied Research award grant no 270/E4.1/AK.04.PT/2021 and Ministry of Education, Culture, Research and Technology of the Republic of Indonesia under the World Class Professor award grant no 2817/E4.1/KK.04.05/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Nurdin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurdin, M., Maulidiyah, M., Watoni, A.H. et al. Nanocomposite design of graphene modified TiO2 for electrochemical sensing in phenol detection. Korean J. Chem. Eng. 39, 209–215 (2022). https://doi.org/10.1007/s11814-021-0938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0938-6

Keywords

Navigation