Skip to main content
Log in

Klinik und Genetik syndromaler und nichtsyndromaler Kraniosynostosen

Clinical course and genetics of syndromic and non-syndromic craniosynostosis

  • CME Zertifizierte Fortbildung
  • Published:
medizinische genetik

Zusammenfassung

Kraniosynostosen gehören mit einer Inzidenz von 1:2000 bis 1:3000 Geburten zu den häufigsten kraniofazialen Anomalien. Die durch die vorzeitige Verknöcherung einer oder mehrerer Schädelnähte verursachte Wachstumshemmung kann zu schweren Deformitäten des Schädel- und Gesichtsskeletts führen. Dies sorgt nicht nur für eine große ästhetische Beeinträchtigung, sondern hat auch funktionelle Auswirkungen für die Patienten. Hierzu können u. a. gehören: intrakranielle Drucksteigerung, Atrophie des N. opticus, Atem-, Hör- und Entwicklungsstörungen. Trotz großer Anstrengungen konnten bisher nur für einen Teil der autosomal-dominanten syndromalen Kraniosynostosen die ursächlichen Gene, z. B „fibroblast growth factor receptor 1-3“ (FGFR1-3), „twist basic helix-loop-helix transcription factor 1“ (TWIST1) etc., gefunden werden. Die Ätiologie der nichtsyndromalen Kraniosynostosen bleibt weiterhin ungeklärt. Aufgrund der verbreiteten Anwendung neuer Sequenziertechnologien zur Identifizierung neuer kausaler Gene bei Patienten mit Kraniosynostose kann in den nächsten Jahren mit der Entschlüsselung vieler weiterer krankheitsverursachender Gene gerechnet werden. Insbesondere die syndromalen Formen der Kraniosynostose bedürfen aufgrund ihrer klinischen Komplexität einer interdisziplinären Betreuung. Die einzige Therapieoption besteht derzeit in der kraniofazialen Chirurgie, welche aber die genetisch determinierten pathologischen Wachstumsmuster der komplexen syndromalen Kraniosynostosen langfristig oft nicht beheben kann.

Abstract

With an incidence of 1:2000–1:3000 births, craniosynostoses are among the most common craniofacial anomalies. Growth inhibition caused by premature fusion of one or more cranial sutures can lead to severe deformities of the skull and facial skeleton. Besides the severe aesthetic problems for the patient, it also has important clinical consequences. These may include raised intracranial pressure, optic nerve atrophy, respiratory, and developmental disorders. Despite major efforts, causative genes (e.g., FGFR1-3, TWIST1) have been detected for only a portion of the autosomal dominantly inherited craniosynostosis syndromes. The etiology of non-syndromic craniosynostosis still remains unclear. The application of next generation sequencing technologies will probably lead to the identification of additional causative genes underlying at the least syndromic forms of craniosynostosis in upcoming years. Due to their clinical complexity, particularly the syndromic forms of craniosynostosis require interdisciplinary care. The only treatment option currently available is craniofacial surgery, which in the long term often fails to remedy the genetically determined pathological growth pattern of complex syndromic craniosynostoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219(4):472–485

    Article  PubMed  CAS  Google Scholar 

  2. Connerney JJ, Spicer DB (2011) Signal transduction pathways and their impairement in syndromic craniosynostosis. Monogr Hum Genet 19:28–44

    Article  CAS  Google Scholar 

  3. Kelleher FC, O’Sullivan H, Smyth E et al (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis Epub ahead of print

  4. Reintjes N, Li Y, Becker A et al (2013) Activating somatic FGFR2 mutations in breast cancer. PLoS One 8(3):e60264

    Article  PubMed  CAS  Google Scholar 

  5. Seifert G, Kress W, Meisel C et al (2006) Genetic investigations of Saethre-Chotzen syndrome presenting with renal cell carcinoma. Cancer Genet Cytogenet 171(1):76–78

    Article  PubMed  CAS  Google Scholar 

  6. Wilkie AO (2007) Cancer drugs to treat birth defects. Nat Genet 39(9):1057–1059

    Article  PubMed  CAS  Google Scholar 

  7. Otto AW (1830) Lehrbuch der Pathologischen Anatomie. Berlin, Rucher

  8. Kimonis V, Gold JA, Hoffman TL et al (2007) Genetics of Craniosynostosis. Semin Pediatr Neurol 14(3):150–161

    Article  PubMed  Google Scholar 

  9. Virchow R (1851) Über den Cretinismus namentlich in Franken, und über pathologische Schädelformen. Verh Phys Med Gesellsch Würzburg 2:231–271

    Google Scholar 

  10. Slater BJ, Lenton KA, Kwan MD et al (2008) Cranial sutures: a brief review. Plast Reconstr Surg 121(4):170–178

    Article  Google Scholar 

  11. McGillivray G, Savarirayan R, Cox TC et al (2005) Familial scaphocephaly syndrome caused by a novel mutation in the FGFR2 tyrosine kinase domain. J Med Genet 42(8):656–662

    Article  PubMed  CAS  Google Scholar 

  12. Lajeunie E, Crimmins DW, Arnaud E et al (2005) Genetic considerations in nonsyndromic midline craniosynostoses: a study of twins and their families. J Neurosurg 103(4):353–356

    PubMed  Google Scholar 

  13. Justice CM, Yagnik G, Kim Y et al (2012) A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet 44(12):1360–1364

    Article  PubMed  CAS  Google Scholar 

  14. Müller-Richter UDA., Schweitzer T, Meyer-Marcotty P et al (2011) Behandlung angeborener komplexer Dysgnathien. Der MKG-Chirurg 4(3): 189-205

  15. Apert E (1906) De l‘ acricephalosyndactylie. Bull Soc Med Hop Paris 23:1310–1330

    Google Scholar 

  16. Cohen MM Jr, Kreiborg S, Lammer EJ et al (1992) Birth prevalence study of the Apert syndrome. Am J Med Genet 42(5):655–659

    Article  PubMed  Google Scholar 

  17. Cohen MM Jr, Kreiborg S (1996) A clinical study of the craniofacial features in Apert syndrome. Int J Oral Maxillofac Surg 25(1):45–53

    Article  PubMed  Google Scholar 

  18. Rice DP (2008) Clinical features of syndromic craniosynostosis. Front Oral Biol 12:91–106

    Article  PubMed  Google Scholar 

  19. Wilkie AO, Slaney SF, Oldridge M et al (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2):165–172

    Article  PubMed  CAS  Google Scholar 

  20. Goriely A, Wilkie AO (2010) Missing heritability: paternal age effect mutations and selfish spermatogonia. Nat Rev Genet 11(8):589

    Article  PubMed  CAS  Google Scholar 

  21. Pfeiffer RA (1964) Dominant Hereditary Acrocephalosyndactylia. Z Kinderheilkd 90:301–320

    Article  PubMed  CAS  Google Scholar 

  22. Lajeunie E, Ma HW, Bonaventure J et al (1995) FGFR2 mutations in Pfeiffer syndrome. Nat Genet 9(2):108

    Article  PubMed  CAS  Google Scholar 

  23. Cohen MM Jr (1993) Pfeiffer syndrome update, clinical subtypes, and guidelines for differential diagnosis. Am J Med Genet 45(3):300–307

    Article  PubMed  Google Scholar 

  24. Crouzon LEO (1912) Dysostose cranio-faciale héréditaire. Bull Soc Med Hop Paris 33:545–555

    Google Scholar 

  25. Cohen MM Jr, Kreiborg S (1992) Birth prevalence studies of the Crouzon syndrome: comparison of direct and indirect methods. Clin Genet 41(1):12–15

    Article  PubMed  Google Scholar 

  26. Wilkie AO (2005) Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev 16(2):187–203

    Article  PubMed  CAS  Google Scholar 

  27. Meyers GA, Orlow SJ, Munro IR et al (1995) Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 11(4):462–464

    Article  PubMed  CAS  Google Scholar 

  28. Twigg SR, Vorgia E, McGowan SJ et al (2013) Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 45(3):308–313

    Article  PubMed  CAS  Google Scholar 

  29. Keupp K, Li Y, Vargel I et al (2013) Mutations in IL11RA cause autosomal recessive Crouzon-like craniosynostosis. Mol Genet Genomic Med (im Druck)

  30. Nieminen P, Morgan NV, Fenwick AL et al (2011) Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption and supernumerary teeth. Am J Hum Genet 89(1):67–81

    Article  PubMed  CAS  Google Scholar 

  31. Chotzen F (1932) Eine eigenartige familiaere Entwicklungsstoerung. Akrocephalosyndaktylie, dysostosis craniofacialis und hypertelorismus. Mschr Kinderheilk 55:97–122

    Google Scholar 

  32. Saethre H (1931) Ein Beitrag zum Turmschaedelproblem. Pathogenese, Erblichkeit und Symptomatologie. Dtsch Z Nervenheilk 119:533–555

    Google Scholar 

  33. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F et al (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15(1):42–46

    Article  Google Scholar 

  34. Kress W, Schropp C, Lieb G et al (2006) Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: functional differentiation from Muenke coronal synostosis syndrome. Eur J Hum Genet 14(1):39–48

    PubMed  CAS  Google Scholar 

  35. Sharma VP, Fenwick AL, Brockop MS et al (2013) Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 45(3):304–307

    Article  PubMed  CAS  Google Scholar 

  36. Muenke M, Gripp KW, McDonald-McGinn DM et al (1997) A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet (3):555–564

    Google Scholar 

  37. Doherty ES, Lacbawan F, Hadley DW et al (2007) Muenke syndrome (FGFR3-related craniosynostosis): expansion of the phenotype and review of the literature. Am J Med Genet A 143A(24):3204–3215

    Article  PubMed  CAS  Google Scholar 

  38. Reardon W, Smith A, Honour JW et al (2000) Evidence for digenic inheritance in some cases of Antley-Bixler syndrome? J Med Genet 37(1):26–32

    Article  PubMed  CAS  Google Scholar 

  39. Flück CE, Tajima T, Pandey AV et al (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet 36(3):228–230

    Article  PubMed  Google Scholar 

  40. Laue K, Pogoda HM, Daniel PB et al (2011) Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89(5):595–606

    Article  PubMed  CAS  Google Scholar 

  41. Przylepa KA, Paznekas W, Zhang M et al (1996) Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome. Nat Genet 13(4):492–494

    Article  PubMed  CAS  Google Scholar 

  42. Jabs EW, Li X, Scott AF, Meyers G et al (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 8(3):275–279

    Article  PubMed  CAS  Google Scholar 

  43. Jenkins D, Seelow D, Jehee FS et al (2007) RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80(6):1162–1170

    Article  PubMed  CAS  Google Scholar 

  44. Wieland I, Jakubiczka S, Muschke P et al (2004) Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am J Hum Genet 74(6):1209–1215

    Article  PubMed  CAS  Google Scholar 

  45. Van Maldergem L, Siitonen HA, Jalkh N et al (2005) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152

    Article  Google Scholar 

  46. Shukla V, Coumoul X, Wang RH et al (2007) RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39(9):1145–1150

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Zhou X, Oberoi K et al (2012) p38 inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest 122(6):2153–2164

    Article  PubMed  CAS  Google Scholar 

  48. Eswarakumar VP, Ozcan F, Lew ED et al (2006) Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis. Proc Natl Acad Sci U S A 103(49):18603–18608

    Article  PubMed  CAS  Google Scholar 

  49. Renier D, Lajeunie E, Arnaud E et al (2000) Management of craniosynostoses. Childs Nerv Syst 16(10–11):645–658

    Google Scholar 

  50. Di Rocco F, Arnaud E, Marchac D et al (2012) Anterior fronto-orbital remodeling for trigonocephay. Childs Nerv Syst 28(9):1369–1373

    Article  Google Scholar 

  51. Marchac A, Arnaud E (2012) Cranium and midface distraction osteogenesis: current practices, controversies, and future applications. J Craniofac Surg 23(1):235–238

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Karin Boss für ihre kritischen Ergänzungen beim Schreiben dieses Artikels.

Einhaltung ethischer Richtlinien

Interessenkonflikt. B. Wollnik wird durch die BMBF-geförderten Netzwerke für seltene Erkrankungen CRANIRARE-2 (E-RARE-Programm) mit dem Förderkennzeichen 01GM1211A und FACE (Forschungsverbund ausgewählter craniofacialer Entwicklungsstörungen) mit dem Förderkennzeichen 01GM1109C unterstützt. M. Rachwalski und W. Kress geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wollnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rachwalski, M., Wollnik, B. & Kress, W. Klinik und Genetik syndromaler und nichtsyndromaler Kraniosynostosen. medgen 25, 373–387 (2013). https://doi.org/10.1007/s11825-013-0412-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11825-013-0412-x

Schlüsselwörter

Keywords

Navigation