Skip to main content
Log in

Tackling Flow Stress of Zirconium Alloys

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Flow stress during hot deformation is essentially controlled by the chemistry of material, initial microstructure/texture, strain, strain rate, strain path, stress triaxility and the temperature of deformation. A comprehensive literature survey has been performed to realize this fact completely. In the present research, a neural network model under Bayesian framework has been created to correlate the complex relationship between flow stress with its influencing parameters in various grades of zirconium alloys at different deformation conditions. The network has been trained with published experimental database obtained from the different hot deformation experiments of zirconium alloys. Performance of the model has been evaluated; and excellent agreements between experimentally measured and model calculated data are obtained. The analysis permits the estimation of error bars whose magnitude strongly depends on their position in the input space. The model has been employed to different grades of zirconium alloys to confirm that the predictions are reasonably accurate in the context of basic metallurgical/solid mechanics theories and principles. The work has clearly identified the regions of the input space where further experiments should be encouraged and necessary. This model will be useful to design and manufacture the new generation zirconium alloys in future for the nuclear power plant components according to the needs of nuclear engineers/scientists by controlling the alloying elements and other possible conditions. The result shows that neural computation is a very effective tool to model the complex \(\textit{non-linear}\) behaviour of flow stress of different zirconium alloys under any deformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Image source [66]

Fig. 2

Image source [70]

Fig. 3
Fig. 4

Data source [13, 39,40,41,42, 47, 50, 51, 187]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

AISI:

American iron and steel institute

ABWRS:

Advanced boiling water reactors

ANN:

Artificial neural network

\(\textit{bcc}\) :

Body centered cubic

BNN:

Bayesian neural network

BWR:

Boiling water reactor

CR:

Cold roll

DMM:

Dynamic material model

DNN:

Deep neural network

DRV:

Dynamic recovery

DRX:

Dynamic recrystallization

DSA:

Dynamic strain aging

EBSD:

Electron back-scatter diffraction

EL:

Elongation

\(\epsilon \) :

Strain

FEA:

Finite element analysis

FEM:

Finite element modelling

FG:

Fine grain

FNN:

Fuzzy neural network

\(\textit{fcc}\) :

Face centered cubic

GB:

Grain boundary

GDX:

Geometric dynamic recrystallization

GS:

Grain size

HT:

High temperature

HCS:

High carbon steels

HWR:

Heavy water reactors

hcp:

Hexagonal closed packed

K:

Strain hardening co-efficient

LGSP:

Large grain superplasticity

LPE:

Log predicted error

L:

Size of committee in ANN

LAS:

Low alloy steel

LCS:

Low carbon steel

LT:

Low temperature

LWR:

Light water reactor

MT:

Martensitic transformation

MRA:

Multiple regression analysis

\(\textit{m}\) :

Strain rate sensitivity

\(\textit{n}\) :

Strain hardening exponent

NN:

Neural network

P:

Pressure

PT:

Pressure tube

PWR:

Pressurized water reactor

RA:

Reduction in area

RT:

Room temperature

RX:

Recrystallization

\(\rho \) :

Dislocation density

\(\sigma _\nu \) :

Regularized sum of squared errors

SD:

Standard deviation

SP:

Superplasticity

SB:

Shear bands/slip bands

SR:

Strain rate

SEM:

Scanning electron microscope

SFE:

Stacking fault energy

SSA:

Static strain ageing

\(\tau _{CRSS}\) :

Critical resolved shear stress

\(\textit{tanh}\) :

Hyperbolic tangent

T:

Temperature

\(T_e\) :

Test error

TT:

Transition temperature

TBC:

Thermal barrier coatings

\(\tau \) :

Stress triaxiality

UNS:

Unified numbering system

UTS:

Ultimate tensile strength

YS:

Yield strength

XRD:

X-ray diffraction

References

  1. Nikulina A, Shishov S, Cox B, Garzarolli F, Rudling P (2006) Manufacturing of Zr–Nb Alloys. ZIRAT11/IZNA6

  2. Perez RJ, Sundman B (2003) Thermodynamic assessment of the Mo–Zr binary phase diagram. Calphad 27(3):253–262

    Google Scholar 

  3. Ramos C, Saragovi C, Granovsky MS (2007) Some new experimental results on the Zr-Nb-Fe system. J Nucl Mater 366(1–2):198–205

    Google Scholar 

  4. Liang J, Zhang M, Ouyang Y, Yuan G, Zhu J, Shen J, Daymond MR (2015) Contribution on the phase equilibria in Zr–Nb–Fe system. J Nucl Mater 466:627–633

    Google Scholar 

  5. Setoyama D, Yamanaka S (2004) Phase diagram of Zr–O–H ternary system. J Alloys Compd 370(1–2):144–148

    Google Scholar 

  6. Robertson JAL (1981) Zirconium—an international nuclear material. J Nucl Mater 100(1–3):108–118

    Google Scholar 

  7. Fotedar RK, Kishore R, Kashyap BP, Banerjee S (1997) Superplastic forming of Zircaloy-2 pressure tube material. In: Materials Science Forum (Vol. 243, pp. 663–668). Trans Tech Publications Ltd

  8. Singh RN, Kishore R, Sinha TK, Kashyap BP (1993) Superplastic behaviour of a Zr–2.5wt.%Nb pressure tube alloy. Scr Metall Mater 28(8):937–942

    Google Scholar 

  9. Shukla SV, Chandrashekharayya C, Singh RN, Fotedar R, Kishore R, Sinha TK, Kashyap BP (1999) Effect of strain rate and test temperature on superplasticity of a Zr–2.5wt.%Nb alloy. J Nucl Mater 273(2):130–138

    Google Scholar 

  10. Singh RN, Kishore R, Sinha TK, Singh AK, Kashyap BP (2001) Microstructural instability and superplasticity in a Zr–2.5wt.%Nb pressure-tube alloy. Metall Mater Trans A 32(11):2827–2840

    Google Scholar 

  11. Singh RN, Mukherjee S, Kishore R, Kashyap BP (2005) Flow behaviour of a modified Zr–2.5wt.%Nb pressure tube alloy. J Nucl Mater 345(2–3):146–161

    Google Scholar 

  12. Singh RN, Viswanathan UK, Kumar S, Satheesh PM, Anantharaman S, Chakravartty JK, Stahle P (2011) Influence of hydrogen content on impact toughness of Zr–2.5Nb pressure tube alloy. Nucl Eng Des 241(7):2425–2436

    Google Scholar 

  13. Mehrotra BN, Tangri K (1980) High temperature (600–800°C) thermally activated deformation behaviour of α-Zircaloy-4-Oxygen alloys. Acta Metall 28(10):1385–1394

    Google Scholar 

  14. Xia CQ, Jiang XJ, Wang XY, Zhou YK, Feng ZH, Liang SX, Tan CL, Ma MZ, Liu RP (2015) Microstructure and mechanical properties of hot-rolled ZrB alloys. Mater Sci Eng A 628:168–175

    Google Scholar 

  15. Kim HG, Park SY, Lee MH, Jeong YH, Kim SD (2008) Corrosion and microstructural characteristics of Zr–Nb alloys with different Nb contents. J Nucl Mater 373(1–3):429–432

    Google Scholar 

  16. Rodchenkov BS, Semenov AN (2005) High temperature mechanical behavior of Zr–2.5%Nb alloy. Nucl Eng Des 235(17–19):2009–2018

    Google Scholar 

  17. Oh YM, Jeong YH, Lee KJ, Kim SJ (2000) Effect of various alloying elements on the martensitic transformation in Zr–0.8Sn alloy. J Alloys Compd 307(1–2):318–323

    Google Scholar 

  18. Kaufmann P, Baroch E (1974) Potential for improvement of mechanical properties in zircaloy cold-rolled strip and sheet. In: Schemel J, Rosenbaum H (eds) Zirconium in nuclear applications. ASTM International, West Conshohocken, pp 129–139

    Google Scholar 

  19. Cox B (1985) Mechanisms of hydrogen absorption by zirconium alloys (No. AECL–8702). Atomic Energy of Canada Ltd

  20. Petersen C (1975) Literature search on some properties of Zircaloy-4 at high temperatures (No. AECL–5101). Kernforschungszentrum Karlsruhe (FR Germany)

  21. Garde AM, Chung HM, Kassner TF (1977) Uniaxial tensile properties of Zircaloy containing oxygen: summary report (No. ANL–77–30). Argonne National Lab., IL (USA)

  22. Garde AM (1979) Strain aging in \(\alpha \)–zirconium and \(\alpha \)–zircaloy at 1000K. J Nucl Mater 80(2):195–206

    Google Scholar 

  23. Tewari R, Srivastava D, Dey GK, Chakravarty JK, Banerjee S (2008) Microstructural evolution in zirconium based alloys. J Nucl Mater 383(1–2):153–171

    Google Scholar 

  24. Yang ZN, Zhang FC, Qu L, Yan ZG, Xiao YY, Liu RP, Zhang XY (2014) Formation of duplex microstructure in Zr–2.3Nb alloy and its plastic behaviour at various strain rates. Int J Plast 54:163–177

    Google Scholar 

  25. Qin X, Huang D, Yan X, Zhang X, Qi M, Yue S (2019) Hot deformation behaviors and optimization of processing parameters for Alloy 602 CA. J Alloys Compd 770:507–516

    Google Scholar 

  26. Prasad YVRK, Gegel HL, Doraivelu SM, Malas JC, Morgan JT, Lark KA, Barker DR (1984) Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Trans A 15(10):1883–1892

    Google Scholar 

  27. Prasad YVRK, Sasidhara S, Sikka VK (2000) Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy. Intermetallics 8(9–11):987–995

    Google Scholar 

  28. Wen DX, Lin YC, Li HB, Chen XM, Deng J, Li LT (2014) Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater Sci Eng A 591:183–192

    Google Scholar 

  29. Tan Y, Ji L, Duan J, Liu W, Zhang J, Liu R (2016) A study on the hot deformation behavior of 47Zr–45Ti–5Al–3V alloy with initial lamellar \(\alpha\) structure. Metall Mater Trans A 47(12):5974–5984

    Google Scholar 

  30. Tan Y, Liu W, Yuan H, Liu R, Zhang X (2013) On the phenomenon of stress drop during hot deformation of ZrTiAlV alloy. Metall Mater Trans A 44(12):5284–5288

    Google Scholar 

  31. Östberg G, Attermo R (1962) Structure transformations in Zircaloy-2 during hot working processes. J Nucl Mater 5(1):120–127

    Google Scholar 

  32. Luton MJ, Jonas JJ (1972) Solute strengthening at high temperatures in zirconium–tin alloys. Can Metall Q 11(1):79–90

    Google Scholar 

  33. Abson DJ, Jonas JJ (1972) Substructure strengthening in zirconium and zirconium–tin alloys. J Nucl Mater 42(1):73–85

    Google Scholar 

  34. Kearns JJ, McCauley JE, Nichols FA (1976) Effect of alpha/beta phase constitution on superplasticity and strength of Zircaloy-4. J Nucl Mater 61(2):169–184

    Google Scholar 

  35. Holm K, Embury JD, Purdy GR (1977) The structure and properties of microduplex Zr–Nb alloys. Acta Metall 25(10):1191–1200

    Google Scholar 

  36. Bocek M, Hofman P, Peterson C (1977) In: Proceedings of the third international symposium zirconium in the nuclear industry. ASTM STP 633:66

  37. Rosinger HE, Unger AE Superplastic and strain rate dependent plastic flow of Zr–2.5Nb between 873 to 1373 K. AECI–6418, Atomic Energy Canada, Pinawa, MA

  38. Makhutov NA, Fedorovich LP, Chirkin AV, Parfenov BG, Tananov AI (1982) Temperature and rate conditions for development of superplasticity in Zr–2.5%Nb alloy. Met Sci Heat Treat 24(7):491–494

    Google Scholar 

  39. Chakravartty JK, Prasad YVRK, Asundi MK (1991) Processing map for hot working of α-zirconium. Metall Trans A 22(4):829–836

    Google Scholar 

  40. Chakravartty JK, Banerjee S, Prasad YVRK (1992) Superplasticity in β-zirconium. Scr Metall Mater 26(1):75–78

    Google Scholar 

  41. Chakravartty JK, Banerjee S, Prasad YVRK, Asundi MK (1992) Hot-working characteristics of Zircaloy-2 in the temperature range of 650–950°C. J Nucl Mater 187(3):260–271

    Google Scholar 

  42. Chakravartty JK, Dey GK, Banerjee S, Prasad YVRK (1995) Characterization of hot deformation behaviour of Zr–2.5Nb–0.5Cu using processing maps. J Nucl Mater 218(2):247–255

    Google Scholar 

  43. Thavoriniti P, Sakuma T (1995) Influence of grain boundary β–spodumene glass on the superplastic flow in tetragonal zirconia polycrystal (TZP). Mater Sci Eng A 202(1–2):249–255

    Google Scholar 

  44. Shukla SV, Chandrashekharayya C, Singh RN, Fotedar R, Kishore R, Sinha TK, Kashyap BP (1999) Effect of strain rate and test temperature on superplasticity of a Zr–2.5 wt.%Nb alloy. J Nucl Mater 273(2):130–138

    Google Scholar 

  45. Kashyap BP, Pathak R, Narasimhan K, Kishore R, Fotedar RK, Sinha TK (1999) Effect of prior cold rolling and test temperature on stress-strain rate behaviour of a Zr–2.5Nb alloy. J Mater Sci 34(3):645–651

    Google Scholar 

  46. Singh RN, Kishore R, Sinha TK, Kashyap BP (1997) A study of superplasticity in a Zr–2.5wt.%Nb pressure tube alloy. In: Materials Science Forum (Vol. 243, pp. 499–504). Trans Tech Publications Ltd

  47. Kapoor R, Chakravartty JK (2002) Characterization of hot deformation behaviour of Zr–2.5Nb in β-phase. J Nucl Mater 306(23):126–133

    Google Scholar 

  48. Perez-Prado MT, Barrabes SR, Kassner ME, Evangelista E (2005) Dynamic restoration mechanisms in α–zirconium at elevated temperatures. Acta Mater 53(3):581–591

    Google Scholar 

  49. Chauvy C, Barberis P, Montheillet F (2006) Microstructure transformation during warm working of β-treated lamellar Zircaloy-4 within the upper α-range. Mater Sci Eng A 431(1–2):59–67

    Google Scholar 

  50. Chakravartty JK, Kapoor R, Banerjee S, Prasad YVRK (2007) Characterization of hot deformation behavior of Zr–1Nb–1Sn alloy. J Nucl Mater 362(1):75–86

    Google Scholar 

  51. Sarkar A, Chakravartty JK (2013) Hot deformation behavior of Zr-1Nb alloy: Characterization by processing map. J Nucl Mater 440(1–3):136–142

    Google Scholar 

  52. Tan YB, Yang L, Tian C, Liu RP, Zhang XY, Liu WC (2013) Hot deformation behavior of ZrTiAlV alloy with a coarse grain structure in the β-phase field. Mater Sci Eng A 577:218–224

    Google Scholar 

  53. Luan B, Gao S, Chai L, Li X, Chapuis A, Liu Q (2013) Compression deformation behavior of Zr–1Sn–0.3Nb alloy with different initial orientations at \(650^{\circ}\text{C}\). Mater Des 52:1065–1070

    Google Scholar 

  54. Tan YB, Yang LH, Duan JL, Liu WC, Zhang JW, Liu RP (2014) Effect of initial grain size on the hot deformation behavior of 47Zr–45Ti–5Al–3V alloy. J Nucl Mater 454(1–3):413–420

    Google Scholar 

  55. Duan J, Tan Y, Ji L, Liu W, Zhang J, Liu R (2015) Hot deformation behavior of 51.1Zr–40.2Ti–4.5Al–4.2V alloy in the single β phase field. Prog Natl Sci Mater Int 25(1):34–41

    Google Scholar 

  56. Feng Z, Jiang X, Zhou Y, Xia C, Zhang X, Ma M, Liu R (2015) Hot deformation behavior and the processing map of Zr–1.0Be alloy in single α phase. Prog Natl Sci Mater Int 25(5):496–502

    Google Scholar 

  57. Zhou YK, Feng ZH, Xia CQ, Liu WC, Qin JING, Liang SX, Zhang ZG, Zhang XY, Liu RP (2016) Influence of temperature and strain rate on hot deformation behavior of Zr50Ti50 alloy in single β field. Trans Nonferrous Met Soc China 26(8):2086–2093

    Google Scholar 

  58. Saboori A, Dadkhah M, Pavese M, Manfredi D, Biamino S, Fino P (2017) Hot deformation behavior of Zr–1%Nb alloy: flow curve analysis and microstructure observations. Mater Sci Eng A 696:366–373

    Google Scholar 

  59. Sarkar A, Chandanshive SA, Thota MK, Kapoor R (2017) High temperature deformation behavior of Zr–1Nb alloy. J Alloys Compd 703:56–66

    Google Scholar 

  60. Zeng Q, Luan B, Wang Y, Zhang X, Liu R, Murty KL, Liu Q (2018) Effect of initial orientation on dynamic recrystallization of a zirconium alloy during hot deformation. Mater Charact 145:444–453

    Google Scholar 

  61. Tan YB, Ji LY, Liu WC, Xiang S, Fei ZHAO, Liang YL (2018) Effect of hot deformation on \(\alpha \)\(\rightarrow \)\(\beta \) phase transformation in 47Zr–45Ti–5Al–3V alloy. Trans Nonferrous Met Soc China 28(10):1947–1957

    Google Scholar 

  62. Cheadle BA, Ells CE, Evans W (1967) The development of texture in zirconium alloy tubes. J Nucl Mater 23(2):199–208

    Google Scholar 

  63. Banerjee S (2001) Nuclear applications: zirconium alloys, in encyclopedia of materials: science and technology. Elsevier, Oxford, pp 6287–6299. https://doi.org/10.1016/B0-08-043152-6/01117-7

  64. Tenckhoff E (2005) Review of deformation mechanism, texture, and mechanical anisotropy in zirconium and zirconium base alloys. J. ASTM Int. 2 No. 2, JAI 12945

  65. Murty KL, Charit I (2006) Texture development and anisotropic deformation of zircaloys. Prog Nucl Energy 48(4):325–359

    Google Scholar 

  66. Garlea E (2008) Fundamental Deformation Micromechanics in a Zircaloy-4 Alloy and the Hydrogen Effects on its Microstructure, Internal Stresses, and Fatigue Behavior. PhD Thesis, University of Tennessee - Knoxville (https://trace.tennessee.edu/utk_graddiss/394)

  67. Partridge PG (1967) The crystallography and deformation modes of hexagonal close-packed metals. Metall Rev 12(1):169–194

    Google Scholar 

  68. Cochrane CJ (2013) Effect of process parameters on deformation of Zr–2.5wt.%Nb alloy (Doctoral dissertation), Queen’s University, Kingston, Ontario, Canada

  69. Chakravartty JK, Gupta C (2001) Hot working of zirconium alloys: some recent developments. Miner Process Extr Metall Rev 22:197–220

    Google Scholar 

  70. Song SG, Gray GT (1995) Influence of temperature and strain rate on slip and twinning behavior of Zr. Metall Mater Trans A 26(10):2665–2675

    Google Scholar 

  71. Kapoor R, Sarkar A, Singh J, Samajdar I, Raabe D (2014) Effect of strain rate on twinning in a Zr alloy. Scr Mater 74:72–75

    Google Scholar 

  72. Nieh TG, Wadsworth J, Sherby OD (2005) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Google Scholar 

  73. Hong E, Dunand DC, Choe H (2010) Hydrogen-induced transformation superplasticity in zirconium. Int J Hydrog Energy 35(11):5708–5713

    Google Scholar 

  74. Das A, Tarafder S (2008) Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scr Mater 59(9):1014–1017

    Google Scholar 

  75. Das A, Sivaprasad S, Ghosh M, Chakraborti PC, Tarafder S (2008) Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Mater Sci Eng A 486(1–2):283–286

    Google Scholar 

  76. Das A, Das SK, Sivaprasad S, Tarafder S (2008) Fracture-property correlation in copper-strengthened high-strength low-alloy steel. Scr Mater 59(7):681–683

    Google Scholar 

  77. Das A, Tarafder S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int J Plast 25(11):2222–2247

    Google Scholar 

  78. Das A, Das SK, Tarafder S (2009) Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel. Metall Mater Trans A 40(13):3138–3146

    Google Scholar 

  79. Das A, Sivaprasad S, Chakraborti PC, Tarafder S (2011) Morphologies and characteristics of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel. Mater Sci Eng A 528(27):7909–7914

    Google Scholar 

  80. Das A, Sivaprasad S, Chakraborti PC, Tarafder S (2011) Connection between deformation-induced dislocation substructures and martensite formation in stainless steel. Philos Mag Lett 91(10):664–675

    Google Scholar 

  81. Das A (2013) Martensite–void interaction. Scr Mater 68(7):514–517

    Google Scholar 

  82. Das A, Poddar P (2013) Structure–wear–property correlation. Mater Des 47:557–565

    Google Scholar 

  83. Das A (2013) Phase transformation during tensile and low cycle fatigue deformation of AISI 304LN stainless steel. Ph.D. Thesis, Jadavpur University, Kolkata

  84. Das A, Sivaprasad S, Das SK, Tarafder S (2005) The role of deformation in AISI grade 304LN stainless steels. Trans Indian Inst Met 58(5)

  85. Das A, Roy N, Ray AK (2014) Stress induced creep cavity. Mater Sci Eng A 598:28–33

    Google Scholar 

  86. Das A (2014) Magnetic properties of cyclically deformed austenite. J Magn Magn Mater 361:232–242

    Google Scholar 

  87. Das A (2015) Crystallographic variant selection of martensite during fatigue deformation. Philos Mag 95(8):844–860

    Google Scholar 

  88. Das A (2015) Crystallographic variant selection of martensite at high stress/strain. Philos Mag 95(20):2210–2227

    Google Scholar 

  89. Das A (2015) Dislocation configurations through austenite grain misorientations. Int J Fatigue 70:473–479

    Google Scholar 

  90. Sanyal G, Das A, Singh JB, Chakravartty JK (2015) Effect of notch geometry on fracture features. Mater Sci Eng A 641:210–214

    Google Scholar 

  91. Das A, Chakravartty JK (2016) Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys. Int J Mater Res 107(2):184–188

    Google Scholar 

  92. Das A (2016) Contribution of deformation-induced martensite to fracture appearance of austenitic stainless steel. Mater Sci Technol 32(13):1366–1373

    Google Scholar 

  93. Das A (2016) Spatial martensite. Mater Sci Eng A 658:484–489

    Google Scholar 

  94. Das A (2018) Enigma of dislocation patterning due to slip in fatigued austenite. Int J Damage Mech 27(2):218–237

    Google Scholar 

  95. Das A (2016) Intervention of martensite variants on the spatial aspect of microvoids. Mater Res Express 3(6):066501

    Google Scholar 

  96. Das A (2017) Grain boundary engineering: fatigue fracture. Philos Mag 97(11):867–916

    Google Scholar 

  97. Das A (2017) Fracture complexity of pressure vessel steels. Philos Mag 97(33):3084–3141

    Google Scholar 

  98. Das A, Chakravartty JK (2017) Fractographic correlations with mechanical properties in ferritic martensitic steels. Surf Topogr Metrol Prop 5(4):045006

    Google Scholar 

  99. Das A (2017) Resurgence of texture in cyclically deformed austenite. Mater Charact 123:315–327

    Google Scholar 

  100. Das A (2018) Effect of stress state on fracture features. Metall Mater Trans A 49(5):1425–1432

    Google Scholar 

  101. Das A (2019) Cyclic plasticity induced transformation of austenitic stainless steels. Mater Charact 149:1–25

    Google Scholar 

  102. McQueen HJ, Blum W (2000) Dynamic recovery: sufficient mechanism in the hot deformation of Al (\(<\) 99.99). Mater Sci Eng A 290(1–2):95–107

    Google Scholar 

  103. Sellars CM (1978) Recrystallization of metals during hot deformation. Philos Trans R Soc Londo Ser A Math Phys Sci 288(1350):147–158

    Google Scholar 

  104. Furuhara T, Poorganji B, Abe H, Maki T (2007) Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM 59(1):64–67

    Google Scholar 

  105. McQueen HJ, Evangelista E, Bowles J, Crawford G (1984) Hot deformation and dynamic recrystallization of Al–5Mg–0.8Mn alloy. Met Sci 18(8):395–402

    Google Scholar 

  106. Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  107. Ashtiani HR, Shahsavari P (2016) A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy. J Alloys Compd 687:263–273

    Google Scholar 

  108. Sellars CM (1985) Computer modelling of hot-working processes. Mater Sci Technol 1(4):325–332

    Google Scholar 

  109. Kassam ZH, Wang Z, Ho ET (1992) Constitutive equations for a modified Zr–2.5wt.%Nb pressure tube material. Mater Sci Eng A 158(2):185–194

    Google Scholar 

  110. Rao KP, Prasad YKDV (1995) Neural network approach to flow stress evaluation in hot deformation. J Mater Process Technol 53(3–4):552–566

    Google Scholar 

  111. Medina SF, Hernandez CA (1996) Modeling of the dynamic recrystallization of austenite in low alloy and microalloyed steels. Acta Mater 44(1):165–171

    Google Scholar 

  112. Wahlen A, Feurer U, Reissner J (1997) Computer controlled measurement and analytical modelling of flow stresses during hot deformation of the cooper alloy CuZn42Mn2. J Mater Process Technol 63(1–3):233–237

    Google Scholar 

  113. Schotten K, Bleck W, Dahl W (1998) Modelling of flow curves for hot deformation. Steel Res 69(4–5):193–197

    Google Scholar 

  114. Prasad YVRK, Seshacharyulu T (1998) Modelling of hot deformation for microstructural control. Int Mater Rev 43(6):243–258

    Google Scholar 

  115. Shercliff HR, Lovatt AM (1999) Modelling of microstructure evolution in hot deformation. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 357(1756):1621–1643

    Google Scholar 

  116. Hodgson PD, Kong LX, Davies CH (1999) The prediction of the hot strength in steels with an integrated phenomenological and artificial neural network model. J Mater Process Technol 87(1–3):131–138

    Google Scholar 

  117. Ding R, Guo ZX (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comput Mater Sci 23(1–4):209–218

    Google Scholar 

  118. Li M, Xiong A, Huang W, Wang H, Su S, Shen L (2002) Microstructural evolution and modelling of the hot compression of a TC6 titanium alloy. Mater Charact 49(3):203–209

    Google Scholar 

  119. Kong LX, Hodgson PD, Collinson DC (2000) Extrapolative prediction of the hot strength of austenitic steels with a combined constitutive and ANN model. J Mater Process Technol 102(1–3):84–89

    Google Scholar 

  120. Miaoquan L, Dunjun C, Aiming X, Li L (2002) An adaptive prediction model of grain size for the forging of Ti–6Al–4V alloy based on fuzzy neural networks. J Mater Process Technol 123(3):377–381

    Google Scholar 

  121. Phaniraj MP, Lahiri AK (2003) The applicability of neural network model to predict flow stress for carbon steels. J Mater Process Technol 141(2):219–227

    Google Scholar 

  122. Jalham IS (2003) Modeling capability of the artificial neural network (ANN) to predict the effect of the hot deformation parameters on the strength of Al-base metal matrix composites. Compos Sci Technol 63(1):63–67

    Google Scholar 

  123. Robi PS, Dixit US (2003) Application of neural networks in generating processing map for hot working. J Mater Process Technol 142(1):289–294

    Google Scholar 

  124. Lin J, Liu Y (2003) A set of unified constitutive equations for modelling microstructure evolution in hot deformation. J Mater Process Technol 143:281–285

    Google Scholar 

  125. Serajzadeh S, Taheri AK (2003) Prediction of flow stress at hot working condition. Mech Res Commun 30(1):87–93

    MATH  Google Scholar 

  126. Zhu Q, Abbod MF, Talamantes-Silva J, Sellars CM, Linkens DA, Beynon JH (2003) Hybrid modelling of aluminium–magnesium alloys during thermomechanical processing in terms of physically-based, neuro-fuzzy and finite element models. Acta Mater 51(17):5051–5062

    Google Scholar 

  127. Kapoor R, Pal D, Chakravartty JK (2005) Use of artificial neural networks to predict the deformation behavior of Zr–2.5Nb–0.5Cu. J Mater Process Technol 169(2):199–205

    Google Scholar 

  128. Lin J, Dean TA (2005) Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol 167(2–3):354–362

    Google Scholar 

  129. Bruni C, Forcellese A, Gabrielli F, Simoncini M (2006) Modelling of the rheological behaviour of aluminium alloys in multistep hot deformation using the multiple regression analysis and artificial neural network techniques. J Mater Process Technol 177(1–3):323–326

    Google Scholar 

  130. Lin YC, Chen MS, Zhong J (2008) Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech Res Commun 35(3):142–150

    Google Scholar 

  131. Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2009) Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Appl Soft Comput 9(1):237–244

    Google Scholar 

  132. Talamantes-Silva J, Abbod MF, Cabrera EP, Howard IC, Beynon JH, Sellars CM, Linkens DA (2009) Microstructure modelling of hot deformation of Al–1%Mg alloy. Mater Sci Eng A 525(1–2):147–158

    Google Scholar 

  133. Ji G, Li F, Li Q, Li H, Li Z (2010) Prediction of the hot deformation behavior for Aermet100 steel using an artificial neural network. Comput Mater Sci 48(3):626–632

    Google Scholar 

  134. Peet MJ, Shirzadi A (2010) Neural network modelling of hot deformation of austenite. In: \(6^{th}\) International conference on physical and numerical simulation of materials processing, 16–19, Guilin, China

  135. Xiao YH, Guo C (2011) Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Mater Sci Eng A 528(15):5081–5087

    Google Scholar 

  136. Liu CY, Zhang RJ, Yan YN (2011) Hot deformation behaviour and constitutive modelling of P92 heat resistant steel. Mater Sci Technol 27(8):1281–1286

    Google Scholar 

  137. Han Y, Zeng W, Zhao Y, Qi Y, Sun Y (2011) An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Comput Mater Sci 50(7):2273–2279

    Google Scholar 

  138. He YB, Pan QL, Qin CHEN, Zhang ZY, Liu XY, Li WB (2012) Modeling of strain hardening and dynamic recrystallization of ZK60 magnesium alloy during hot deformation. Trans Nonferrous Met Soc China 22(2):246–254

    Google Scholar 

  139. Wu B, Li MQ, Ma DW (2012) The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater Sci Eng A 542:79–87

    Google Scholar 

  140. Xiao J, Li DS, Li XQ, Deng TS (2012) Constitutive modeling and microstructure change of Ti–6Al–4V during the hot tensile deformation. J Alloys Compd 541:346–352

    Google Scholar 

  141. Li HY, Hu JD, Wei DD, Wang XF, Li YH (2012) Artificial neural network and constitutive equations to predict the hot deformation behavior of modified 2.25Cr–1Mo steel. Mater Des 42:192–197

    Google Scholar 

  142. Momeni A, Abbasi SM, Badri H (2012) Hot deformation behavior and constitutive modeling of VCN200 low alloy steel. Appl Math Model 36(11):5624–5632

    Google Scholar 

  143. Tello KE, Gerlich AP, Mendez PF (2010) Constants for hot deformation constitutive models for recent experimental data. Sci Technol Weld Join 15(3):260–266

    Google Scholar 

  144. Wang L, Liu F, Zuo Q, Chen CF (2013) Prediction of flow stress for N08028 alloy under hot working conditions. Mater Des 47:737–745

    Google Scholar 

  145. Yan T, Yu E, Zhao Y (2013) Constitutive modeling for flow stress of 55SiMnMo bainite steel at hot working conditions. Mater Des 50:574–580

    Google Scholar 

  146. Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR (2013) Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des 49:386–391

    Google Scholar 

  147. Galindo-Nava EI, Rivera-Diaz-del-Castillo PEJ (2013) Thermostatistical modelling of hot deformation in FCC metals. Int J Plast 47:202–221

    Google Scholar 

  148. Liu Y, Li HY, Jiang HF, Su XJ (2013) Artificial neural network modelling to predict hot deformation behaviour of zinc–aluminium alloy. Mater Sci Technol 29(2):184–189

    Google Scholar 

  149. Peng W, Zeng W, Wang Q, Yu H (2013) Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des 51:95–104

    Google Scholar 

  150. Zhou M, Lin YC, Deng J, Jiang YQ (2014) Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy. Mater Des 59:141–150

    Google Scholar 

  151. Ren FC, Chen J, Chen F (2014) Constitutive modeling of hot deformation behavior of X20Cr13 martensitic stainless steel with strain effect. Trans Nonferrous Met Soc China 24(5):1407–1413

    Google Scholar 

  152. Zhao J, Ding H, Zhao W, Huang M, Wei D, Jiang Z (2014) Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Comput Mater Sci 92:47–56

    Google Scholar 

  153. Zhao J, Ding H, Zhao W, Jiang Z (2013) Effects of hydrogen on the hot deformation behaviour of Ti–6Al–4V alloy: experimental and constitutive model studies. J Alloys Compd 574:407–414

    Google Scholar 

  154. He A, Xie G, Zhang H, Wang X (2014) A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des 56:122–127

    Google Scholar 

  155. Yao CG, Wang B, Yi DQ, Wang B, Ding XF (2014) Artificial neural network modelling to predict hot deformation behaviour of as HIPed FGH4169 superalloy. Mater Sci Technol 30(10):1170–1176

    Google Scholar 

  156. Zhang P, Hu C, Zhu Q, Ding CG, Qin HY (2015) Hot compression deformation and constitutive modeling of GH4698 alloy. Mater Des 65:1153–1160

    Google Scholar 

  157. Mirzadeh H (2015) Constitutive behaviors of magnesium and Mg–Zn–Zr alloy during hot deformation. Mater Chem Phys 152:123–126

    Google Scholar 

  158. Li HY, Wei DD, Hu JD, Li YH, Chen SL (2012) Constitutive modeling for hot deformation behavior of T24 ferritic steel. Comput Mater Sci 53(1):425–430

    Google Scholar 

  159. Fan QC, Jiang XQ, Zhou ZH, Ji W, Cao HQ (2015) Constitutive relationship and hot deformation behavior of Armco-type pure iron for a wide range of temperature. Mater Des 65:193–203

    Google Scholar 

  160. Han Y, Zeng W, Zhao Y, Zhang X, Sun Y, Ma X (2010) Modeling of constitutive relationship of Ti–25V–15Cr–0.2Si alloy during hot deformation process by fuzzy-neural network. Mater Des 31(9):4380–4385

    Google Scholar 

  161. Hu P, Shi D, Ying L, Shen G, Liu W (2015) The finite element analysis of ductile damage during hot stamping of 22MnB5 steel. Mater Des 69:141–152

    Google Scholar 

  162. Haghdadi N, Martin D, Hodgson P (2016) Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Mater Des 106:420–427

    Google Scholar 

  163. Bobbili R, Ramudu BV, Madhu V (2017) A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy. J Alloys Compd 696:295–303

    Google Scholar 

  164. Sani SA, Ebrahimi GR, Vafaeenezhad H, Kiani-Rashid AR (2018) Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model. J Magnes Alloys 6(2):134–144

    Google Scholar 

  165. Li CL, Narayana PL, Reddy NS, Choi SW, Yeom JT, Hong JK, Park CH (2019) Modeling hot deformation behavior of low-cost Ti–2Al–9.2Mo–2Fe \(\beta \) titanium alloy using a deep neural network. J Mater Sci Technol 35(5):907–916

    Google Scholar 

  166. Cao ZH, Yu SUN, Chen ZHOU, Wan ZP, Yang WH, Ren LL, Hu LX (2019) Cellular automaton simulation of dynamic recrystallization behavior in V–10Cr–5Ti alloy under hot deformation conditions. Trans Nonferrous Met Soc China 29(1):98–111

    Google Scholar 

  167. Jahedi M, McWilliams BA, Moy P, Knezevic M (2017) Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution. Acta Mater 131:221–232

    Google Scholar 

  168. Beer AG, Barnett MR (2006) Influence of initial microstructure on the hot working flow stress of Mg–3Al–1Zn. Mater Sci Eng A 423(1–2):292–299

    Google Scholar 

  169. Bhadeshia HKDH, Dimitriu RC, Forsik S, Pak JH, Ryu JH (2009) Performance of neural networks in materials science. Mater Sci Technol 25(4):504–510

    Google Scholar 

  170. Eberhart RC, Dobbins RW (1990) Neural networks PC tools. Academic Press, California

    Google Scholar 

  171. Fujii H, Mackay DJC, Bhadeshia HKDH (1996) Bayesian neural network analysis of fatigue crack growth rate in nickel base superalloys. ISIJ Int 36:1373–1382

    Google Scholar 

  172. Bhadeshia HKDH (1999) Neural networks in materials science. ISIJ Int 39(10):966–979

    Google Scholar 

  173. Das A, Tarafder S, Chakraborti PC (2011) Estimation of deformation induced martensite in austenitic stainless steels. Mater Sci Eng A 529:9–20

    Google Scholar 

  174. Das A, Chakraborti PC, Tarafder S, Bhadeshia HKDH (2011) Analysis of deformation induced martensitic transformation in stainless steels. Mater Sci Technol 27(1):366–370

    Google Scholar 

  175. Das A, Sivaprasad S, Tarafder M, Das SK, Tarafder S (2013) Estimation of damage in high strength steels. Appl Soft Comput 13(2):1033–1041

    Google Scholar 

  176. Das A, Chowdhury T, Tarafder S (2014) Ductile fracture micro-mechanisms of high strength low alloy steels. Mater Des 54:1002–1009

    Google Scholar 

  177. Das A (2016) Revisiting stacking fault energy of steels. Metall Materi Trans A 47(2):748–768

    Google Scholar 

  178. Das A (2017) Calculation of crystallographic texture of BCC steels during cold rolling. J Mater Eng Perform 26(6):2708–2720

    Google Scholar 

  179. Das A (2018a) Calculation of ductility from pearlite microstructure. Mater Sci Technol 34(9):1046–1063

    Google Scholar 

  180. Das A (2018b) An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys. Int J Mater Res 109(11):979–1004

    Google Scholar 

  181. Das A, Das SK, Sivaprasad S, Tarafder M, Tarafder S (2013) Analysis of damage accumulations in high strength low alloy steels under monotonic deformation. Procedia Eng 55:786–792

    Google Scholar 

  182. MacKay DJ (1992) Bayesian interpolation. Neural Comput 4(3):415–447

    MATH  Google Scholar 

  183. MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4(3):448–472

    Google Scholar 

  184. MacKay DJ (1994) Bayesian nonlinear modeling for the prediction competition. ASHRAE Trans 100(2):1053–1062

    Google Scholar 

  185. MacKay DJ (1995) Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Netw Comput Neural Syst 6(3):469–505

    MATH  Google Scholar 

  186. Bhadeshia HKDH (2009) Neural networks and information in materials science. Stat Anal Data Min ASA Data Sci J 1(5):296–305

    MathSciNet  MATH  Google Scholar 

  187. Derep JL, Ibrahim S, Rouby R, Fantozzi G (1980) Deformation behaviour of Zircaloy-4 between 77 and 900 K. Acta Metall 28(5):607–619

    Google Scholar 

  188. Tsang M, Cheng D, Liu Y (2017) Detecting statistical interactions from neural network weight. arXiv preprint arXiv:1705.04977

  189. Ivanov OS, Grigorovich VK (1959) Structure and properties of zirconium alloys (No. A/CONF. 15/P/2046) USSR

  190. Zaimovsky AS, Nikulina AV (1966) Influence of impurities and alloying elements on Zr resistance to high temperature water. In: International conference on reactor use of Zr (Zr-66). Mariansky Lanzy, CzSSR

  191. Amaev AD, Ambartsumyan RS, Kiselev AA (1964) Influence of some factors upon hydriding and variation of properties of zirconium alloy with 1%Nb used for fuel element cladding in water–moderated water–cooled power reactors (No. A/CONF. 28/P/342) USSR

  192. Amaev AD, Anisimova JA, Nikulina AV, Saenko GP (1971) Corrosion behaviour of zirconium alloys in boiling water under irradiation (No. A/CONF. 49/P–428; CONF–710901–378 and others), State Atomic Energy Committee, USSR

  193. Xiao D, Li Y, Hu S, Cai L (2010) High strain rate deformation behavior of zirconium at elevated temperatures. J Mater Sci Technol 26(10):878–882

    Google Scholar 

  194. Yan C, Wang R, Wang Y, Wang X, Bai G (2015) Effects of ion irradiation on microstructure and properties of zirconium alloys—a review. Nucl Eng Technol 47(3):323–331

    Google Scholar 

  195. Yang H, Shen J, Matsukawa Y, Satoh Y, Kano S, Zhao Z, Li Y, Li F, Abe H (2015) Effects of alloying elements (Sn, Nb, Cr, and Mo) on the microstructure and mechanical properties of zirconium alloys. J Nucl Sci Technol 52(9):1162–1173

    Google Scholar 

  196. Prasad YVRK, Rao KP, Sasidhar S (2015) Hot working guide: a compendium of processing maps, ASM International

  197. Straumal BB, Gornakova AS, Mazilkin AA, Fabrichnaya OB, Kriegel MJ, Baretzky B, Jiang JZ, Dobatkin SV (2012) Phase transformations in the severely plastically deformed Zr–Nb alloys. Mater Lett 81:225–228

    Google Scholar 

  198. Holt RA (2008) In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes. J Nucl Mater 372(2–3):182–214

    Google Scholar 

  199. Hehemann RF (1972) Transformations in zirconlum–niobium alloys. Can Metall Q 11(1):201–211

    Google Scholar 

  200. Williams CD, Gilbert RW (1968) Proceedings of international conference on strength of metals and alloys, supplement to Transactions. Japan Inst Met 9:625

  201. Wang Y, Tang B, Cui YW, Kou H, Li J (2013) Effect of strain rate on impact response and \(\omega \) transformation of quenched Zr–Nb alloys. Mater Charact 84:10–15

    Google Scholar 

  202. Charit I, Murty KL (2008) Creep behavior of niobium-modified zirconium alloys. J Nucl Mater 374(3):354–363

    Google Scholar 

  203. Pahutova M, Kucharova K, Cadek J (1977) Some basic creep characteristics of Zr–Sn and.z.sbnd;Mo and Zr–Sn–Mo–Nb alloys part I. Steady state creep. Mater Sci Eng 27(3):239–248

    Google Scholar 

  204. Alam T, Khan MK, Pathak M, Ravi K, Singh R, Gupta SK (2011) A review on the clad failure studies. Nucl Eng Des 241(9):3658–3677

    Google Scholar 

  205. Jung YI, Seol YN, Choi BK, Park JY, Jeong YH (2010) Effect of Cr on the creep properties of zirconium alloys. J Nucl Mater 396(2–3):303–306

    Google Scholar 

  206. Yang Y, Tan L, Bei H, Busby JT (2013) Thermodynamic modeling and experimental study of the Fe–Cr–Zr system. J Nucl Mater 441(1–3):190–202

    Google Scholar 

  207. Isobe T, Matsuo Y (1991) Development of highly corrosion resistant zirconium-base alloys. In: Zirconium in the nuclear industry: ninth international symposium. ASTM International

  208. Lee SY, Kim KT, Hong SI (2009) Circumferential creep properties of stress-relieved Zircaloy-4 and Zr–Nb–Sn–Fe cladding tubes. J Nucl Mater 392(1):63–69

    Google Scholar 

  209. Wei J, Frankel P, Polatidis E, Blat M, Ambard A, Comstock RJ, Hallstadius L, Hudson D, Smith GDW, Grovenor CRM, Klaus M (2013) The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys. Acta Mater 61(11):4200–4214

    Google Scholar 

  210. Sabol GP, Kilp GR, Balfour MG, Roberts E (1989) Proceedings of 8th international symposium on zirconium in the nuclear industry (2nd Ed.), ASTM–STP 1023, American Society for Testing and Materials, Philadelphia, PA, p 227

  211. Garzarolli F, Seidel H, Tricot R, Gros JP (1991) 9th international symposium on zirconium in the nuclear industry. ASTM-STP 1132:395

  212. Hong HS, Kim SJ, Lee KS (1996) Effects of alloying elements on the tensile properties and oxidation behavior of modified Zircaloy-4 in \(360^{\circ }\text{ C }\) water. J Nucl Mater 238(2–3):211–217

    Google Scholar 

  213. Subasic N (1998) Thermodynamic evaluation of Sn–Zr phase diagram. Calphad 22(2):157–165

    Google Scholar 

  214. Luton MJ, Jonas JJ (1970) Second international conference on the strength of metals and alloys. Asilomar, ASM Metal Park, Ohio (USA) 1100

  215. Wadekar SL, Raman VV, Banerjee S, Asundi MK (1988) Structure-property correlation of Zr-base alloys. J Nucl Mater 151(2):162–171

    Google Scholar 

  216. Keskar N, Krishna KM, Srivastava D, Dey GK (2015) Effect of Sn content and texture on the twinning behaviour of Zr–Sn binary alloys at low temperature. J Nucl Mater 465:71–77

    Google Scholar 

  217. Imarisio GC, Cocchi M, Faini G (1970) Selection of new zirconium alloys for high temperature terphenyls. J Nucl Mater 37(3):257–275

    Google Scholar 

  218. Castaldelli L (1982) Fifth international symposium on zirconium in the nuclear industry. ASTM-STP 754:105

  219. Hong HS, Kim HS, Kim SJ, Lee KS (2000) Effects of copper addition on the tensile properties and microstructures of modified Zircaloy-4. J Nucl Mater 280(2):230–234

    Google Scholar 

  220. Saxena KK, Sonkar S, Kumar R, Pancholi V, Chaudhari GP, Srivastava D, Dey GK, Jha SK, Saibaba N (2014) Effect of temperature and strain rate on deformation behavior of zirconium alloy: Zr–2.5Nb–0.5Cu. Procedia Mater Sci 6:188–193

    Google Scholar 

  221. Chakravartty JK (1992) Optimization of hot workability and control of microstructure in zirconium and zirconium alloys using processing maps. Indian Institute of Science, Bangalore Ph.D. thesis

  222. Tangri K, Chaturvedi M (1969) Effect of 0.5wt.pct Cu addition on the quench ageing transformations in Zr–2.5wt.pct.Nb (Cb) alloy. Trans Metall Soc AIME 245(5):991

    Google Scholar 

  223. Kutty TRG, Ravi K, Ganguly C (1999) Studies on hot hardness of Zr and its alloys for nuclear reactors. J Nucl Mater 265(1–2):91–99

    Google Scholar 

  224. Kapoor K, Sreedharan KM, Lakshminarayana A, Kumar JS, Chandramouli VA (1991) Proceedings of zirconium alloys for reactor components (ZARC–91), Bombay, India, 12–13 December 1991, Department of Atomic Energy, Bombay, p 420

  225. Lundin CE, McPherson DJ, Hansen M (1953) System zirconium–copper. Trans AIME 197:273–278

    Google Scholar 

  226. Massalski TB (1990) Binary alloy phase diagrams. ASM, p 1511

  227. Douglass DL, Morgan RE (1959) The determination of solid solubilities by quantitative metallography of a single alloy. Trans Metall Soc AIME 215:869–870

    Google Scholar 

  228. Bsenko L (1975) Crystallographic data for intermediate phases in the copper–hafnium systems. J Less-Common Met 40(3):365–366

    Google Scholar 

  229. Elliott RP (1965) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  230. Kim HG, Kim YH, Choi BK, Jeong YH (2006) Effect of alloying elements (Cu, Fe, and Nb) on the creep properties of Zr alloys. J Nucl Mater 359(3):268–273

    Google Scholar 

  231. Dalgaard SB (1960) The corrosion resistance of Zr–Nb and Zr–Nb–Sn alloys in high-temperature water and steam (No. AECL–993). Atomic Energy of Canada Limited

  232. Harte A, Griffiths M, Preuss M (2018) The characterisation of second phases in the Zr–Nb and Zr–Nb–Sn–Fe alloys: a critical review. J Nucl Mater 505:227–239

    Google Scholar 

  233. Choudhuri G, Kumar MK, Kain V, Srivastava D, Basu S, Shah BK, Saibaba N, Dey GK (2013) Influence of Fe content on corrosion and hydrogen pick up behavior of Zr–2.5Nb pressure tube material. J Nucl Mater 441(1–3):178–189

    Google Scholar 

  234. Sinha SK, Sinha RK (2011) IAEA workshop on prediction of axial and radial creep of HWR pressure tubes, (Nov. 16–18)

  235. Granovsky MS, Arias D (1996) Intermetallic phases in the iron-rich region of the Zr–Fe phase diagram. J Nucl Mater 229:29–35

    Google Scholar 

  236. Arias D, Abriata JP (1988) The Fe–Zr (Iron–Zirconium) system. Bull Alloy Phase Diagr 9(5):597–604

    Google Scholar 

  237. Woo OT, Griffiths M (2009) The role of Fe on the solubility of Nb in α-Zr. J Nucl Mater 384(1):77–80

    Google Scholar 

  238. Kaden W, Debray W (1969) Applications-related phenomena in zirconium and its alloys. ASTM STP 458, ASTM, 179

  239. Kench JR, Foley JH, Aldridge SA (1966) The effects of dissolved oxygen upon the mechanical properties of zirconium-2.5wt.%niobium alloy. Atomic Energy of Canada Limited, AECL–2623

  240. Rubenstein LS, Goodwin JG, Shubert FL (1961) Effect of oxygen on the properties of Zircaloy-2. Trans ASM 54:20–30

    Google Scholar 

  241. Kelly PM, Smith PD (1973) Strain-ageing in zirconium–oxygen alloys. J Nucl Mater 46(1):23–34

    Google Scholar 

  242. Abriata JP, Garces J, Versaci R (1986) The O–Zr (oxygen–zirconium) system. Bull Alloy Phase Diagr 7(2):116–124

    Google Scholar 

  243. Hunt CEL, Niessen P (1970) The effect of oxygen on the equilibrium b/a + b transformation temperature of zirconium–niobium alloys. J Nucl Mater 35:134–136

    Google Scholar 

  244. Gupta PD, Arunachalam VS (1968) Thermally activated deformation in dilute zirconium/oxygen alloys. J Mater Sci 3(3):271–281

    Google Scholar 

  245. MacEwen SR (1982) The mechanical equation of state and strengthening mechanisms for deformation of crystal-bar zirconium. Acta Metall 30(7):1431–1442

    Google Scholar 

  246. Mills D, Craig GB (1968) The plastic deformation of zirconium–oxygen alloy single crystals in the range 77 to 950 K. Trans AIME 242(9):1881–1890

    Google Scholar 

  247. Wang C, Zinkevich M, Aldinger F (2004) On the thermodynamic modeling of the Zr–O system. Calphad 28(3):281–292

    Google Scholar 

  248. Kaschner GC, Gray GT (2000) The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium. Metall Mater Trans A 31(8):1997–2003

    Google Scholar 

  249. Tabachnikova ED, Bengus VZ, Podolskiy AV, Smirnov SN, Gunderov D, Valiev R (2006) Low temperature mechanical properties of different commercial purity nanostructured titanium processed by ECA pressing. In: Materials science forum (Vol. 503, pp 633–638). Trans Tech Publications Ltd

  250. Chun YB, Hwang SK, Kim MH, Kwun SI, Kim YS (1999) Effect of Mo on recrystallization characteristics of Zr–Nb–(Sn–Mo) experimental alloys. J Nucl Mater 265(1–2):28–37

    Google Scholar 

  251. Lyakishev NP (1996) Phase diagrams of binary metallic systems. Mashinostroenie, Moscow 2:204–206

  252. Kanel GI (2012) Rate and temperature effects on the flow stress and tensile strength of metals. In: AIP conference proceedings (Vol. 1426, No. 1, pp 939–944). American Institute of Physics

  253. Hoge KG, Mukherjee AK (1977) The temperature and strain rate dependence of the flow stress of tantalum. J Mater Sci 12(8):1666–1672

    Google Scholar 

  254. Lee D (1970) The strain rate dependent plastic flow behavior of zirconium and its alloys. Metall Trans 1(6):1607–1616

    Google Scholar 

  255. Sinha TK, Asundi MK (1977) Effect of strain rate and tensile properties of heat-treated zirconium–2.5wt.% niobium alloy. J Nucl Mater 67(3):311–314

    Google Scholar 

  256. Ramesh KT (2002) Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans A 33(13):927–935

    Google Scholar 

  257. Evans C, Jones NG, Rugg D, Lindley TC, Dye D (2012) The effect of deformation mechanisms on the high temperature plasticity of Zircaloy-4. J Nucl Mater 424(1–3):123–131

    Google Scholar 

  258. Escobedo JP, Cerreta EK, Trujillo CP, Martinez DT, Lebensohn RA, Webster VA, Gray GT III (2012) Influence of texture and test velocity on the dynamic, high-strain, tensile behavior of zirconium. Acta Mater 60(11):4379–4392

    Google Scholar 

  259. Takuda H, Fujimoto H, Hatta N (1998) Modelling on flow stress of Mg–Al–Zn alloys at elevated temperatures. J Mater Process Technol 80:513–516

    Google Scholar 

  260. Saxena KK, Yadav SD, Sonkar S, Pancholi V, Chaudhari GP, Srivastava D, Dey GK, Jha SK, Saibaba N (2014) Effect of temperature and strain rate on deformation behavior of zirconium alloy: Zr–2.5Nb. Proc Mater Sci 6:278–283

  261. Akhtar A (1973a) Basal slip in zirconium. Acta Metall 21(1):1–11

    Google Scholar 

  262. Akhtar A (1973b) Compression of zirconium single crystals parallel to the c-axis. J Nucl Mater 47(1):79–86

    Google Scholar 

  263. Akhtar A, Teghtsoonian A (1971) Plastic deformation of zirconium single crystals. Acta Metall 19(7):655–663

    Google Scholar 

  264. Christodoulou N, Levi MR, Turner PA, Ho ETC, Chow CK (2000) Anisotropy of yielding in a Zr–2.5Nb pressure tube material. Metall Mater Trans A 31(2):409–420

    Google Scholar 

  265. Shober FR, VanEcho JA, Marsh Jr LL, Keeler JR (1957) The mechanical properties of zirconium and Zircaloy 2 (No. BMI–1168). Battelle Memorial Institute, Columbus, Ohio (USA)

  266. Keeler JH (1955) The tensile characteristics of unalloyed zirconium at low and moderate temperatures. Trans ASM 47:157–185

    Google Scholar 

  267. Watkins B, Wood D (1969) The significance of irradiation-induced creep on reactor performance of a Zircaloy-2 pressure tube. In Applications-Related Phenomena in Zirconium and its Alloys. ASTM International

  268. Langford WJ (1970) Irradiation effects on structural alloys for nuclear reactor applications. ASTM STP484, pp 259–285

  269. Langford WJ, Mooder LEJ (1971) Metallurgical properties of irradiated cold-worked Zr–2.5 wt.%Nb pressure tubes. J Nucl Mater 39(3):292–302

    Google Scholar 

  270. Hardy DG (1970) Irradiation effects on structural alloys for nuclear reactor applications. ASTM STP484, pp 215–257

  271. Lee D (1968) Dutility of textured Zircalcy-2. Trans ASM 61(1968):742–749

    Google Scholar 

  272. Rittenhouse P (1969) The Effect of Texture on the Torsional Yielding of Zircaloy Tubing. In Applications-related phenomena in Zirconium and its alloys. ASTM International

  273. Mehan RF, Weisinger WE (1961) Mechanical properties of Zircaloy-2, Knolls Atomic Power Labs. Report KAPL 2110

  274. Picklesimer ML (1966) Deformation, creep, and fracture in alpha zirconim alloys. Electrochem Technol 4(7–8):289–300

    Google Scholar 

  275. Gloaguen D, Berchi T, Girard E, Guillen R (2008) Examination of residual stresses and texture in zirconium alloy cladding tubes after a large plastic deformation: experimental and numerical study. J Nucl Mater 374(1–2):138–146

    Google Scholar 

  276. Skripnyak VA, Skripnyak EG, Skripnyak V, Serbenta VA, Skripnyak VN Numerical simulation of mechanical behavior of Zr–Nb alloys in a wide temperature range. www.sci-en-tech.com/ICCM2018/PDFs/3410-11051-1-PB.pdf

  277. Kishore R, Singh RN, Sinha TK, Kashyap BP (1992) The morphology and ageing behaviour of \(\delta \) ferrite in a modified 9Cr–1Mo steel. J Nucl Mater 195(1–2):198–204

    Google Scholar 

  278. McCabe RJ, Cerreta EK, Misra A, Kaschner GC, Tomé CN (2006) Effects of texture, temperature and strain on the deformation modes of zirconium. Philos Mag 86(23):3595–3611

    Google Scholar 

  279. Scattergood RO, Bacon DJ (1982) The strengthening effect of voids. Acta Metall 30(8):1665–1677

    Google Scholar 

  280. Onchi T, Kayano H, Higashiguchi Y (1977) Effect of neutron irradiation on deformation behavior of zirconium. J Nucl Sci Technol 14(5):359–369

    Google Scholar 

Download references

Acknowledgements

I am extremely grateful to Professor Sir H.K.D.H. Bhadeshia, Phase Transformation and Complex Properties Research Group, Department of Materials Science and Metallurgy, University of Cambridge, England, United Kingdom for the provision of Neuromat Neural Network software for the present analysis. I would also like to thank Professor Eugenio Onate (The Editor in Chief–Archives of Computational Methods in Engineering) for the acceptance of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Das.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Tackling Flow Stress of Zirconium Alloys. Arch Computat Methods Eng 28, 2103–2131 (2021). https://doi.org/10.1007/s11831-020-09451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09451-z

Navigation