Skip to main content
Log in

Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

  • Accident Tolerant Nuclear Fuels and Cladding Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant (k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Testing was executed in Los Alamos, New Mexico, USA. The altitude of the laboratory results in a significant departure from 1 atm in any system maintained at local atmospheric pressure.

References

  1. R. Gauntt, D. Kalinich, J. Cardoni, J. Phillips, A. Goldmann, S. Pickering, M. Francis, K. Robb, L. Ott, D. Wang, C. Smith, S. St.Germain, D. Schwieder, and C. Phelan, SAND2012-6173, Sandia National Laboratory (SNL) (2012)

  2. Y. Yukinori, B.A. Pint, K.A. Terrani, Y. Yang, K.G. Field, and L.L. Snead, J. Nucl. Mater. 467, 703 (2015).

    Article  Google Scholar 

  3. R.B. Rebak, P.L. Andresen, Y.J. Kim, and E.J. Dolley. IAEA TECDOC SERIES 79 (2016)

  4. K. Barrett and S. Bragg-Sitton. No. INL/EXT-12-27090. Idaho National Laboratory (INL) (2012)

  5. B.A. Pint, A.U. Kinga, and A.T. Kurt, Mater. High Temp. 32, 28 (2015).

    Article  Google Scholar 

  6. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, J. Nucl. Mater. 448, 374 (2014).

    Article  Google Scholar 

  7. R.A. Shapiro, M.Y. Ian, and M. Fratoni, Trans. Am. Nucl. Soc. 109, 1351 (2013).

    Google Scholar 

  8. J.D. Hales and K.A. Gamble. No. INL/CON-14-33932. Idaho National Laboratory, (INL) (2015)

  9. N.R. Brown and M. Todosow. No. BNL–107219-2014-CP. Brookhaven National Laboratory (BNL) (2014)

  10. T. Cheng, J. Keiser, M. Brady, K.A. Terrani, and B.A. Pint, J. Nucl. Mater. 427, 396 (2012).

    Article  Google Scholar 

  11. K.A. Terrani, S. Zinkle, and L.L. Snead, J. Nucl. Mater. 448, 420 (2014).

    Article  Google Scholar 

  12. B.A. Pint, K.A. Terrani, M. Brady, T. Cheng, and J.J. Keiser, Nucl. Mater. 440, 420 (2013).

    Article  Google Scholar 

  13. I.G. Write, B.A. Pint, and P.F. Tortorelli, Oxid. Metals 55, 333 (2001).

    Article  Google Scholar 

  14. D. Sebastien, R.V. Put, and B.A. Pint, Oxid. Metals. 79, 627 (2013).

    Article  Google Scholar 

  15. E.S. Wood, K.A. Terrani, and A.T. Nelson, J. Nucl. Mater. 477, 228 (2016).

    Article  Google Scholar 

  16. R. Carter, J. Chem. Phys. 34, 2010 (1961).

    Article  Google Scholar 

  17. C. Wagner, Z. Phys. Chem. B 21, 25 (1933).

    Google Scholar 

  18. J.V. Cathcart, R.E. Pawel, P.A. McKee, R.E. Druschel, G.J. Yurek, and J.J. Campbell. ORNL/NUREG-17,Oak Ridge National Laboratory (1977)

  19. B.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, Metal. Mater. Trans. E. 2, 190 (2015).

    Google Scholar 

  20. L. Tan and B.A. Pint, Oakridge National Laboratory, ORNL/TM-2017/288 (2017)

  21. D. Laverde, T. Comez-Acebo, and F. Castro, Corros. Sci. 46, 613 (2004).

    Article  Google Scholar 

  22. G. Ostberg, Aktibolaget Atomenergi (Sweden: Stockholm, 1960).

    Google Scholar 

  23. C.S. Tedmon Jr., J. Electrochem. Soc. 113, 766 (1966).

    Article  Google Scholar 

  24. N. Li, S.S. Parker, E.S. Wood, and A.T. Nelson, J. Nucl. Mater. Submitted September (2017)

  25. B.A. Pint and J.W. McMurray, ORNL/LTR-2016/425 (2016)

  26. A.T. Nelson, E.S. Sooby, Y.J. Kim, B. Cheng, and S.A. Maloy, J. Nucl. Mater. 448, 441 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by the US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program. This work was performed at Los Alamos National Laboratory under the auspices of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Parker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, S.S., White, J., Hosemann, P. et al. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments. JOM 70, 186–191 (2018). https://doi.org/10.1007/s11837-017-2639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2639-5

Navigation