Skip to main content
Log in

Revealing the Mechanisms of Grain Nucleation and Formation During Additive Manufacturing

  • The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The Interdependence model is now widely used to analyze the results of grain refinement studies. Although the model was developed to predict the grain size of an alloy cast under the assumptions of near equilibrium solidification and the presence of potent nucleant particles, it has been found to be applicable to a wide variety of alloys, casting methods, and cooling conditions. However, the strength of the Interdependence model is when it is used as a diagnostic tool that can reveal the mechanisms influencing the refinement of alloys under particular solidification conditions. This paper presents an introduction to the Interdependence model, its recent validation by experiment, and examples of how it can be applied to the solidification of alloys during additive manufacturing. For example, the model explains the difficulties in promoting a transition from columnar to equiaxed grains during additive manufacturing while also providing insights into how a fully equiaxed grain structure can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from Ref. 44

Fig. 7

Similar content being viewed by others

References

  1. W. Kurz and D.J. Fisher, Fundamentals of solidification, 4th ed. (Zurich: Trans Tech Publications Ltd, 1998).

    Google Scholar 

  2. G.J. Marshall, W.J. Young, S.M. Thompson, N. Shamsaei, S.R. Daniewicz, and S. Shao, JOM 68, 778 (2016).

    Google Scholar 

  3. S. Bontha, N.W. Klingbeil, P.A. Kobryn, and H.L. Fraser, Mater. Sci. Eng. A 513–514, 311 (2009).

    Google Scholar 

  4. M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, and M.S. Dargusch, Acta Mater. 168, 261 (2019).

    Google Scholar 

  5. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Google Scholar 

  6. X. Lin, T.M. Yue, H.O. Yang, and W.D. Huang, Metall. Mater. Trans. A 38, 127 (2007).

    Google Scholar 

  7. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59, 4907 (2011).

    Google Scholar 

  8. M.A. Easton and D.H. StJohn, Acta Mater. 49, 1867 (2001).

    Google Scholar 

  9. D. Shu, B. Sun, J. Mi, and P.S. Grant, Acta Mater. 59, 2135 (2011).

    Google Scholar 

  10. Q. Du and Y. Li, Acta Mater. 71, 380 (2014).

    Google Scholar 

  11. Y. Xu, D. Casari, R.H. Mathiesen, and Y. Li, Acta Mater. 149, 312 (2018).

    Google Scholar 

  12. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 48, 2823 (2000).

    Google Scholar 

  13. Y. Jia, H. Huang, Y. Fu, G. Zhu, D. Shu, B. Sun, and D.H. StJohn, Scr. Mater. 167, 6 (2019).

    Google Scholar 

  14. E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky, and P.S. Grant, Sci. Adv. 4, eaar4004 (2018).

    Google Scholar 

  15. A. Prasad, S.D. McDonald, H. Yasuda, K. Nogita, and D.H. StJohn, J. Cryst. Growth 430, 122 (2015).

    Google Scholar 

  16. L. Yuan, A. Prasad, P.D. Lee, and D. StJohn, IOP Conf. Ser. Mater. Sci. Eng. 529, 012043 (2019).

    Google Scholar 

  17. A. Prasad, E. Liotti, S.D. McDonald, K. Nogita, H. Yasuda, P.S. Grant, and D.H. StJohn, IOP Conf. Ser. Mater. Sci. Eng. 84, 012014 (2015).

    Google Scholar 

  18. E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. Jing, W. Li, and P.D. Lee, Acta Mater. 152, 127 (2018).

    Google Scholar 

  19. C. Cao, G. Yao, L. Jiang, M. Sokoluk, X. Wang, J. Ciston, A. Javadi, Z. Guan, I. De Rosa, W. Xie, E.J. Lavernia, J.M. Schoenung, and X. Li, Sci. Adv. 5, eaaw2398 (2019).

    Google Scholar 

  20. D.H. St John, S.D. McDonald, M.J. Bermingham, S. Mereddy, A. Prasad, and M. Dargusch, Key Eng. Mater. 770, 155 (2018).

    Google Scholar 

  21. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn, J. Mater. Res. 23, 98 (2008).

    Google Scholar 

  22. M.A. Easton and D.H. St. John, Metall. Mater. Trans. A 30A, 1613 (1999).

    Google Scholar 

  23. M. Li, J.-M. Li, Q. Zheng, G. Wang, and M.-X. Zhang, Metall. Mater. Trans. A 49, 2235 (2018).

    Google Scholar 

  24. M.J. Bermingham, S.D. McDonald, D.H. StJohn, and M.S. Dargusch, J. Mater. Res. 26, 951 (2011).

    Google Scholar 

  25. S. Mantri, T. Alam, D. Choudhuri, C. Yannetta, C. Mikler, P. Collins, and R. Banerjee, J. Mater. Sci. 52, 12455 (2017).

    Google Scholar 

  26. A. Xue, X. Lin, L. Wang, J. Wang, and W. Huang, Mater. Des. 181, 107943 (2019).

    Google Scholar 

  27. K. Zhang, X. Tian, M. Bermingham, J. Rao, Q. Jia, Y. Zhu, X. Wu, S. Cao, and A. Huang, Mater. Des. 184, 108191 (2019).

    Google Scholar 

  28. S. Mereddy, M.J. Bermingham, D. Kent, A. Dehghan-Manshadi, D.H. StJohn, and M.S. Dargusch, JOM 70, 1670 (2018).

    Google Scholar 

  29. M.Y. Mendoza, P. Samimi, D.A. Brice, B.W. Martin, M.R. Rolchigo, R. LeSar, and P.C. Collins, Metall. Mater. Trans. A 48, 3594 (2017).

    Google Scholar 

  30. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. St John, and M.A. Easton, Nature 576, 91 (2019).

    Google Scholar 

  31. M.J. Bermingham, D. Kent, H. Zhan, D.H. St John, and M.S. Dargusch, Acta Mater. 91, 289 (2015).

    Google Scholar 

  32. M.J. Bermingham, S.D. McDonald, and M.S. Dargusch, Mater. Sci. Eng. A 719, 1 (2018).

    Google Scholar 

  33. S. Tedman-Jones, S. McDonald, M. Bermingham, D. StJohn, and M. Dargusch, J. Alloys Compd. 794, 268 (2019).

    Google Scholar 

  34. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, and H.M. Wang, J. Alloys Compd. 632, 505 (2015).

    Google Scholar 

  35. Q. Zhang, J. Chen, X. Lin, H. Tan, and W.D. Huang, J. Mater. Proc. Tech. 238, 202 (2016).

    Google Scholar 

  36. D. Carluccio, M. Bermingham, Y. Zhang, D. StJohn, K. Yang, P. Rometsch, X. Wu, and M. Dargusch, J. Man. Proc. 35, 715 (2018).

    Google Scholar 

  37. L. Xi, P. Wang, K.G. Prashanth, H. Li, H.V. Prykhodko, S. Scudino, and I. Kaban, J. Alloys Compd. 786, 551 (2019).

    Google Scholar 

  38. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Acta Mater. 129, 183 (2017).

    Google Scholar 

  39. D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, and R. Poprawe, Scr. Mater. 96, 25 (2015).

    Google Scholar 

  40. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).

    Google Scholar 

  41. F. Zhang, M. Yang, A.T. Clare, X. Lin, H. Tan, and Y. Chen, J. Alloys Compd. 727, 821 (2017).

    Google Scholar 

  42. L. Yuan and P.D. Lee, Acta Mater. 60, 4917 (2012).

    Google Scholar 

  43. H.B. Dong and P.D. Lee, Acta Mater. 53, 659 (2005).

    Google Scholar 

  44. M. Sun, D.H. StJohn, M.A. Easton, K. Wang, and J. Ni, Metall. Mater. Trans. A (2019). https://doi.org/10.1007/s11661-019-05497-2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support of the University of Queensland’s School of Mechanical and Mining Engineering and the Queensland Centre for Advanced Materials processing and Manufacturing. M.B. acknowledges the support of the Australian Research Council Discovery Program and is in receipt of a Discover Early Career Researcher Award (DE160100260). M.B, D.StJ., M.E., and M.D. acknowledge the support of the Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices (IH150100024). M.E. and D.StJ. acknowledge support from DP160100560.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bermingham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermingham, M., StJohn, D., Easton, M. et al. Revealing the Mechanisms of Grain Nucleation and Formation During Additive Manufacturing. JOM 72, 1065–1073 (2020). https://doi.org/10.1007/s11837-020-04019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04019-5

Navigation