Skip to main content

Advertisement

Log in

Knockdown of long non-coding RNA plasmacytoma variant translocation 1 inhibits cell proliferation while promotes cell apoptosis via regulating miR-486-mediated CDK4 and BCAS2 in multiple myeloma

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Aims

This study aimed to investigate the effect of long non-coding RNA-plasmacytoma variant translocation 1 (lnc-Pvt1) knockdown on regulating cell proliferation and apoptosis, and to explore its molecular mechanism in multiple myeloma (MM).

Methods

Lnc-Pvt1 expression was detected in MM cell lines (NCI-H929, U-266, LP-1 and RPMI-8226 cell lines) and human normal plasma cells. In U-266 cells and LP-1 cells, control shRNA and lnc-Pvt1 shRNA plasmids were transferred. Rescue experiments were further performed by transfection of lnc-Pvt1 shRNA alone and lnc-Pvt1 shRNA and miR-486 shRNA plasmids. Cells proliferation, apoptosis, RNA expression, and protein expression were determined by cell counting kit-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and Western blot assays, respectively.

Results

Lnc-Pvt1 expression was increased in MM cell lines (NCI-H929, U-266 and LP-1 cell lines) compared with human normal plasma cells. In U-266 cells, lnc-Pvt1 shRNA suppressed cell proliferation while enhanced cell apoptosis compared with control shRNA. Also, lnc-Pvt1 shRNA increased miR-486 expression compared with control shRNA. Further rescue experiment revealed that miR-486 shRNA did not change lnc-Pvt1 level, but increased CDK4 and BCAS2 expressions in lnc-Pvt1 knockdown–treated cells. In addition, miR-486 shRNA promoted cell proliferation while inhibited cell apoptosis in lnc-Pvt1 knockdown–treated cells. These results were further validated in LP-1 cells.

Conclusions

Lnc-Pvt1 knockdown inhibits cell proliferation and induces cell apoptosis through potentially regulating miR-486-mediated CDK4 and BCAS2 in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG, Gertz MA, Giralt S, Mateos MV, Leleu X, Anderson KC (2018) Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia 32(2):252–262. https://doi.org/10.1038/leu.2017.329

    Article  CAS  PubMed  Google Scholar 

  2. Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I (2018) Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 32(7):1500–1514. https://doi.org/10.1038/s41375-018-0061-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saxe D, Seo EJ, Bergeron MB, Han JY (2019) Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol 41(1):5–14. https://doi.org/10.1111/ijlh.12882

    Article  PubMed  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  5. Holstein SA, Suman VJ, McCarthy PL (2019) Should overall survival remain an endpoint for multiple myeloma trials? Curr Hematol Malig Rep 14(1):31–38. https://doi.org/10.1007/s11899-019-0495-9

    Article  PubMed  Google Scholar 

  6. Albagoush S, Azevedo A (2018) Cancer. Multiple myeloma. in StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  7. Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17(12):756–770. https://doi.org/10.1038/nrm.2016.126

    Article  CAS  PubMed  Google Scholar 

  8. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  9. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 12(6):433–446. https://doi.org/10.1038/nrd4018

    Article  CAS  PubMed  Google Scholar 

  10. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Wang R, Ye Z, Wang Y, Li X, Chen W, Zhang M, Cai C (2018) PVT1 affects EMT and cell proliferation and migration via regulating p21 in triple-negative breast cancer cells cultured with mature adipogenic medium. Acta Biochim Biophys Sin Shanghai 50(12):1211–1218. https://doi.org/10.1093/abbs/gmy129

    Article  CAS  PubMed  Google Scholar 

  12. Zou MF, Ling J, Wu QY, Zhang CX (2018) Long non-coding RNA PVT1 functions as an oncogene in ovarian cancer via upregulating SOX2. Eur Rev Med Pharmacol Sci 22(21):7183–7188. https://doi.org/10.26355/eurrev_201811_16251

    Article  PubMed  Google Scholar 

  13. Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, Sun Q, Ren Q, Zhang L (2019) LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1. J Cell Physiol 234(4):4799–4811. https://doi.org/10.1002/jcp.27279

    Article  CAS  PubMed  Google Scholar 

  14. Salehi M, Sharifi M (2018) Induction of apoptosis and necrosis in human acute erythroleukemia cells by inhibition of long non-coding RNA PVT1. Mol Biol Res Commun 7(2):89–96. https://doi.org/10.22099/mbrc.2018.29081.1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izadifard M, Pashaiefar H, Yaghmaie M, Montazeri M, Sadraie M, Momeny M, Jalili M, Ahmadvand M, Ghaffari SH, Mohammadi S, Alimoghaddam K, Ghavamzadeh A (2018) Expression analysis of PVT1, CCDC26, and CCAT1 long noncoding RNAs in acute myeloid leukemia patients. Genet Test Mol Biomarkers 22(10):593–598. https://doi.org/10.1089/gtmb.2018.0143

    Article  CAS  PubMed  Google Scholar 

  16. Guan Z, Tan J, Gao W, Li X, Yang Y, Li X, Li Y, Wang Q (2018) Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway. J Cell Physiol 234(1):500–508. https://doi.org/10.1002/jcp.26612

    Article  CAS  PubMed  Google Scholar 

  17. Lang B, Zhao S (2018) miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncol Rep 39(1):71–80. https://doi.org/10.3892/or.2017.6064

    Article  CAS  PubMed  Google Scholar 

  18. Shao Y, Shen YQ, Li YL, Liang C, Zhang BJ, Lu SD, He YY, Wang P, Sun QL, Jin YX, Ma ZL (2016) Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget 7(23):34011–34021. https://doi.org/10.18632/oncotarget.8514

    Article  PubMed  PubMed Central  Google Scholar 

  19. Colombo T, Farina L, Macino G, Paci P (2015) PVT1: a rising star among oncogenic long noncoding RNAs. Biomed Res Int 2015:304208. https://doi.org/10.1155/2015/304208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao M, Feng Y, Liu C, Zhang Z (2018) Prognostic values of long noncoding RNA PVT1 in various carcinomas: an updated systematic review and meta-analysis. Cell Prolif 51(6):e12519. https://doi.org/10.1111/cpr.12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Yang Y, Cao Y, Wu C, Wu S, Su Z, Jin H, Wang D, Zhang G, Fan W, Lin J, Zeng Y, Hu D (2018) lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis. Cancer Manag Res 10:2711–2727. https://doi.org/10.2147/CMAR.S166260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang R, Li J, Yan X, Jin K, Li W, Liu X, Zhao J, Shang W, Liu Y (2018) Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) promotes colon cancer progression via endogenous sponging miR-26b. Med Sci Monit 24:8685–8692. https://doi.org/10.12659/MSM.910955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu Y, Zhang M, Liu J, Xu B, Yang J, Wang N, Yan S, Wang F, He X, Ji G, Li Q, Miao L (2018) Long non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in Cholangiocarcinoma. Mol Ther Nucleic Acids 13:503–513. https://doi.org/10.1016/j.omtn.2018.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Yang G, Luo Y (2019) Long non-coding RNA PVT1 promotes glioma cell proliferation and invasion by targeting miR-200a. Exp Ther Med 17(2):1337–1345. https://doi.org/10.3892/etm.2018.7083

    Article  CAS  PubMed  Google Scholar 

  25. Hua J, Ding T, Yang L (2016) Dysfunction of microRNA-32 regulates ubiquitin ligase FBXW7 in multiple myeloma disease. Onco Targets Ther 9:6573–6579. https://doi.org/10.2147/OTT.S105945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y, Chang H, Chen G (2018) Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol Lett 15(6):10001–10007. https://doi.org/10.3892/ol.2018.8555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang G, Liu X, Zhao X, Zhao J, Hao J, Ren J, Chen Y (2019) MiR-9 promotes multiple myeloma progression by regulating TRIM56/NF-kappaB pathway. Cell Biol Int. https://doi.org/10.1002/cbin.11104

  28. Liu H, Ni Z, Shi L, Ma L, Zhao J (2019) MiR-486-5p inhibits the proliferation of leukemia cells and induces apoptosis through targeting FOXO1. Mol Cell Probes 44:37–43. https://doi.org/10.1016/j.mcp.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  29. Wang LS, Li L, Li L, Chu S, Shiang KD, Li M, Sun HY, Xu J, Xiao FJ, Sun G, Rossi JJ, Ho Y, Bhatia R (2015) MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 125(8):1302–1313. https://doi.org/10.1182/blood-2014-06-581926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iriyama N, Hino H, Moriya S, Hiramoto M, Hatta Y, Takei M, Miyazawa K (2018) The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells. Leuk Lymphoma 59(6):1439–1450. https://doi.org/10.1080/10428194.2017.1376741

    Article  CAS  PubMed  Google Scholar 

  31. Perumal D, Kuo PY, Leshchenko VV, Jiang Z, Divakar SK, Cho HJ, Chari A, Brody J, Reddy MV, Zhang W, Reddy EP, Jagannath S, Parekh S (2016) Dual targeting of CDK4 and ARK5 using a novel kinase inhibitor ON123300 exerts potent anticancer activity against multiple myeloma. Cancer Res 76(5):1225–1236. https://doi.org/10.1158/0008-5472.CAN-15-2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuo PC, Tsao YP, Chang HW, Chen PH, Huang CW, Lin ST, Weng YT, Tsai TC, Shieh SY, Chen SL (2009) Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer Res 69(23):8877–8885. https://doi.org/10.1158/0008-5472.CAN-09-2023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XC conceived and supervised the study. MZ and XZ performed the research, designed the research study, analyzed the data, and wrote the paper. PW and MY performed the research. ZW analyzed the data and revised the paper. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xinan Cai.

Ethics declarations

The present study was approved by the Ethics Committee of our institution, and the written informed consent for the study use of BM sample was collected from the healthy donor before recruitment.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhao, X., Cai, X. et al. Knockdown of long non-coding RNA plasmacytoma variant translocation 1 inhibits cell proliferation while promotes cell apoptosis via regulating miR-486-mediated CDK4 and BCAS2 in multiple myeloma. Ir J Med Sci 189, 825–834 (2020). https://doi.org/10.1007/s11845-019-02165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-019-02165-7

Keywords

Navigation