Skip to main content
Log in

Bi-Lipschitz bijection between the Boolean cube and the Hamming ball

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n ∈ N there exists an explicit bijection ψ: {0, 1}n → {x ∈ {0, 1}n+1 : |x| > n/2} such that for every xy ∈ {0, 1}n, \(\frac{1}{5} \leqslant \frac{{dis\tan ce\left( {\psi \left( x \right),\psi \left( y \right)} \right)}}{{dis\tan ce\left( {x,y} \right)}} \leqslant 4,\) where distance(·, ·) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive.

This result gives a strong negative answer to an open problem of Lovett and Viola (2012), who raised the question in the context of sampling distributions in low-level complexity classes. The conceptual implication is that the problem of proving lower bounds in the context of sampling distributions requires ideas beyond the sensitivity-based structural results of Boppana (1997).

We study the mapping ψ further and show that it (and its inverse) are computable in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that ψ is “approximately local” in the sense that all but the last output bit of ψ are essentially determined by a single input bit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Angel and I. Benjamini, A phase transition for the metric distortion of percolation on the hypercube, Combinatorica 27 (2007), 645–658.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Austin, On the failure of concentration for the l -ball, 2013, http://arxiv. org/abs/1309.3315.

  3. R. Boppana, The average sensitivity of bounded-depth circuits, Information Processing Letters 63 (1997), 257–261.

    Article  MathSciNet  Google Scholar 

  4. N. G. De Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Archief voor Wiskunde 23 (1951), 191–193, 1951.

    MathSciNet  MATH  Google Scholar 

  5. E. Friedgut, Boolean functions with low average sensitivity depend on few coordinates, Combinatorica 18 (1998), 27–35.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Goldreich, S. Goldwasser and A. Nussboim, On the implementation of huge random objects SIAM Journal on Computing 39 (2010), 2761–2822.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. L. Graham, Isometric embeddings of graphs, in Selected Topics in Graph Theory, 3, Academic Press, San Diego, CA, 1998, pp. 133–150.

    Google Scholar 

  8. L. H. Harper, Optimal numbering and isoperimetric problems on graphs, Journal of Combinatorial Theory 1 (1966), 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Hart, A note on the edges of the n-cube, Discrete Mathamatics 14 (1976), 157–163.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Hastad, Almost optimal lower bounds for small depth circuits, in Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, Berkeley, CA, 1986, ACM, New York, NY, 1986, pp. 6–20.

    Google Scholar 

  11. J. Hastad, T. Leighton and M. Newman, Reconfiguring a hypercube in the presence of faults, in Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, New York, NY, 1987, ACM, New York, NY, 1987, pp. 274–284.

    Google Scholar 

  12. A. E. Holroyd, Geometric properties of poisson matchings, Probability Theory and Related Fields 150 (2011), 511–527.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly 2 (1955), 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Linial, Finite metric spaces—combinatorics, geometry and algorithms, in Proceedings of the International Congress of Mathematicians, Vol. III, (Beijing, 2002), Higher Education Press, Beijing, 2002, pp. 573–586.

    MATH  Google Scholar 

  15. S. Lovett and E. Viola, Bounded-depth circuits cannot sample good codes, Computational Complexity 21 (2012), 245–266.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Lynch, Log space recognition and translation of parenthesis languages, Journal of the ACM 24 (1977), 583–590.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Morris and A. Sinclair, Random walks on truncated cubes and sampling 0-1 knapsack solutions, SIAM Journal on Computing 34 (2004), 195–226.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Viola, The complexity of distributions, SIAM Journal on Computing 41 (2012), 191–218.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Viola, Extractors for circuit sources, SIAM Journal on Computing 43 (2014), 655–672.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Itai Benjamini or Gil Cohen.

Additional information

Research supported by Israel Science Foundation (ISF) grant.

Research supported by ERC grant number 239985.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjamini, I., Cohen, G. & Shinkar, I. Bi-Lipschitz bijection between the Boolean cube and the Hamming ball. Isr. J. Math. 212, 677–703 (2016). https://doi.org/10.1007/s11856-016-1302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1302-0

Navigation