Skip to main content
Log in

Modeling and linking the Poisson and exponential distributions

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Randomness and distribution are important concepts underpinning the ability to think and reason probabilistically. Traditional approaches to teaching the Poisson distribution focus on mathematical definitions and formulae which obscure the randomness intrinsic in this process. Advances in technology have made it possible for students learning about probability to model the Poisson process. In this paper we explore the reasoning of six introductory probability students as they interacted with a prototype software designed to visibilize randomness, and to make transparent the link between the Poisson and exponential distributions. We focus on a task involving both real data and simulated data. Our findings highlight the fact that the tool and tasks seem to help students’ understanding of the link between the Poisson and exponential distributions, and to gain a deeper appreciation of distribution and randomness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147–168). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Barton, D., & Lavery, C. (2012). Sigma statistics: NCEA level 3. Auckland: Pearson.

    Google Scholar 

  • Batanero, C., Chernoff, E., Engel, J., Lee, H., & Sanchez, E. (2016). Research on teaching and learning probability. In Proceedings of topic study group 14 at the 13th international conference on mathematics education (ICME) (pp. 1–33). Hamburg, Germany. https://doi.org/10.1007/978-3-319-31625-3_1.

    Google Scholar 

  • Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovnick (Eds.), Chance encounters: Probability in education (pp. 169–211). Boston: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Blitzstein, J. K., & Hwang, J. (2014). Introduction to probability. New York: CRC Press.

    Book  Google Scholar 

  • Budgett, S., Pfannkuch, M., Regan, M., & Wild, C. J. (2013). Dynamic visualizations and the randomization test. Technology Innovations in Statistics Education, 7(2), 1–21.

    Google Scholar 

  • Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of statistics. Technology Innovations in Statistics Education, 1(1), 1–26.

    Google Scholar 

  • Chance, B., del Mas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 295–323). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modeling and simulation in statistics and probability teaching. In C. Batanero, G. Burrill & C. Reading (Eds.), Teaching statistics in school mathematics - Challenges for teachers and teacher education. A joint ICMI/IASE study: The 18th ICMI Study (pp. 85–95). New York: Springer.

    Chapter  Google Scholar 

  • Chernoff, E. J., & Sriraman, B. (Eds.). (2014). Probabilistic thinking: Presenting plural perspectives. Dordrecht: Springer.

    Google Scholar 

  • Chu, S. (2003). Using soccer goals to motivate Poisson process. INFORMS Transactions on Education, 3(2), 64–70.

    Article  Google Scholar 

  • Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823.

    Article  Google Scholar 

  • Cobb, P., & McClain, K. (2004). Principles of instructional design for supporting the development of students’ statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 375–396). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 75–99). Dordrecht: Springer.

    Chapter  Google Scholar 

  • English, L. D., & Watson, J. M. (2016). Development of probabilistic understanding in fourth grade. Journal for Research in Mathematics Education, 47(1), 28–62.

    Article  Google Scholar 

  • Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM - International Journal on Mathematics Education, 44(7), 883–898.

    Article  Google Scholar 

  • Johnson, R. W. (2017). Discovering patterns in interarrival data. Teaching Statistics, 39(2), 42–46.

    Article  Google Scholar 

  • Johnston-Wilder, P., & Pratt, D. (2007). The relationship between local and global perspectives on randomness. In D. Pitta & G. Philippou (Eds.), Proceedings of the fifth European conference on research in mathematics education. Larnaca: ERME.

    Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. New York: Allen Lane.

    Google Scholar 

  • Kazak, S., Fujita, T., & Wegerif, R. (2016). Students’ informal inference about the binomial distribution of “bunny hops”: A dialogic perspective. Statistics Education Research Journal, 15(2), 46–61.

    Google Scholar 

  • Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325.

    Article  Google Scholar 

  • Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education, 2(1). http://repositories.cdlib.org/uclastat/cts/tise/vol2/iss1/art1/

  • Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N. J., & Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, 13(1&2), 68–86.

    Article  Google Scholar 

  • Lane, D. M., & Peres, S. C. (2006). Interactive simulations in the teaching of statistics: promise and pitfalls. In A. Rossman & B. Chance (Eds.), Proceedings of the seventh international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute..

    Google Scholar 

  • Lee, H. S., & Lee, J. T. (2009). Reasoning about probabilistic phenomena: Lessons learned and applied in software design. Technology Innovations in Statistics Education, 3(2), 1–22.

    Google Scholar 

  • MacGillivray, H. (2006). Using data, student experiences and collaboration in developing probabilistic reasoning at the introductory tertiary level. In A. Rossman & B. Chance (Eds.), Proceedings of the 7th international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute.

    Google Scholar 

  • Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about informal statistical inference. Mathematical Thinking and Learning, 4(3), 1–4.

    Article  Google Scholar 

  • Martignon, L., & Krauss, S. (2009). Hands-on activities for fourth graders: A tool box for decision-making and reckoning with risk. International Electronic Journal of Mathematics Education, 4(3), 117–148.

    Google Scholar 

  • Nickerson, R. S. (2002). The production and perception of randomness. Psychological Review, 109(2), 330–357.

    Article  Google Scholar 

  • Patton, M. Q. (2015). Qualitative research and evaluation methods. London: Sage.

    Google Scholar 

  • Peres, S. C., Lane, D. M., & Griggs, K. R. (2010). Using simulations for active learning: the query-first method in practice. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the eighth international conference on teaching statistics, Ljubljana, Slovenia. Voorburg: International Statistical Institute.

    Google Scholar 

  • Pfannkuch, M., & Budgett, S. (2016). Markov processes: Exploring the use of dynamic visualizations to enhance student understanding. Journal of Statistics Education, 24(2), 63–73. https://doi.org/10.1080/10691898.2016.1207404.

    Article  Google Scholar 

  • Pfannkuch, M., Budgett, S., Fewster, R., Fitch, M., Pattenwise, S., Wild, C., & Ziedins, I. (2016). Probability modelling and thinking: What can we learn from practice? Statistics Education Research Journal, 15(2), 11–37.

    Google Scholar 

  • Pfannkuch, M., & Ziedins, I. (2014). A modelling perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 101–116). New York: Springer.

    Chapter  Google Scholar 

  • Poisson, S. D. (1837). Recherches sur la probabilité des jugements en matiere criminelle et en matière civile, précédées des règles générales du calcul des probabilités. Paris: Bachelier.

    Google Scholar 

  • Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in Mathematics Education, 31(5), 602–625.

    Article  Google Scholar 

  • Pratt, D. (2011). Re-connecting probability and reasoning from data in secondary school teaching. In Proceedings of the 58th international statistical institute world statistics congress (pp. 890–899). The Hague, The Netherlands: International Statistical Institute.

  • Ross, S. M. (2010). Introduction to probability models. Burlington: Academic Press.

    Google Scholar 

  • Schoenfeld, A. (2007). Method. In F. Lester (Ed.), Second handbook of research on the teaching and learning of mathematics (pp. 96–107). Charlotte: Information Age Publishers.

    Google Scholar 

  • Shaughnessy, J. M. (2014). Commentary on the chapters on probability from a stochastic perspective. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 481–489). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7155-0_25.

    Chapter  Google Scholar 

  • Taleb, N. N. (2005). Fooled by randomness. New York: Random House.

    Google Scholar 

  • Thomas, M. O. (2008). Conceptual representations and versatile mathematical thinking. In Proceedings of the tenth international congress in mathematics education (pp. 1–18). Copenhagen, Denmark.

  • von Bortkewitsch, L. (1898). Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.

    Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Teaching and Learning Research Initiative (tlri.org.nz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Budgett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budgett, S., Pfannkuch, M. Modeling and linking the Poisson and exponential distributions. ZDM Mathematics Education 50, 1281–1294 (2018). https://doi.org/10.1007/s11858-018-0957-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0957-x

Keywords

Navigation