Skip to main content
Log in

Philosophy of mathematical practice: a primer for mathematics educators

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice. In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the distinction between formal and informal proofs, visualization and artefacts, mathematical explanation and understanding, value judgments, and mathematical design. We conclude with some remarks on the potential connections between the philosophy of mathematical practice and mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For other overviews of the field aimed at philosophers we refer to Van Bendegem (2014), Giardino (2017b), and Carter (2019).

  2. For discussions relevant to the characterization of the notion of mathematical practice, see also Giardino et al. (2012) and Carter (2019, sec. 4).

  3. Two themes that will not be addressed in this paper are the role of computers in mathematical inquiry and the issue of ethics in mathematics. For the former, we refer the reader to Avigad (2008a). For the latter, see Rogers and Kaiser (1995), Ernest (2016, 2018), and Rittberg, Tanswell, and Van Bendegem (forthcoming).

  4. For a discussion of Rav’s notion of know-how, see Tanswell (2016, chapter 4).

  5. See Hamami (2018) for an analysis of these differences at the level of the elementary components of the two types of proofs.

  6. See Hamami (forthcoming) for an attempt to meet this challenge which is nonetheless compatible with the standard view.

  7. For extensive reviews of visual and diagrammatic thinking in mathematics, see Giaquinto (2016) and Giardino (2017a).

  8. For a critical outlook on Brown’s view, see Folina (1999).

  9. For another seminal analysis of the role of diagrams in Greek mathematics, see Netz (1999). For attempts to formalize diagrammatic reasoning in the proofs of Euclid’s Elements see Miller (2007), Mumma (2006, 2010), and Avigad, Dean, and Mumma (2009). For an analysis of the relation between geometric objects and the diagrams that represent them, see Panza (2012).

  10. Several important volumes have already brought together philosophers and mathematics educators to reflect on the relation between the two fields (François and Van Bendegem 2007; Van Kerkhove and Van Bendegem 2007; Ernest et al. 2016; Ernest 2018).

References

  • Aberdein, A. (2006). The informal logic of mathematical proof. In R. Hersh (Ed.), 18 Unconventional essays on the nature of mathematics (pp. 56–70). New York: Springer.

    Google Scholar 

  • Aberdein, A., & Inglis, M. (Eds.). (2019). Advances in experimental philosophy of logic and mathematics. London: Bloomsbury Academic.

    Google Scholar 

  • Andersen, L. E. (forthcoming). Acceptable gaps in mathematical proofs. Synthese. https://doi.org/10.1007/s11229-018-1778-8.

  • Andersen, L. E., Johansen, M. W., & Sørensen, H. K. (forthcoming). Mathematicians writing for mathematicians. Synthese. https://doi.org/10.1007/s11229-019-02145-5.

  • Antonutti Marfori, M. (2010). Informal proofs and mathematical rigour. Studia Logica, 96(2), 261–272.

    Google Scholar 

  • Arana, A. (2015). On the depth of Szemerédi’s theorem. Philosophia Mathematica, 23(2), 163–176.

    Google Scholar 

  • Arana, A. (2016). Imagination in mathematics. In A. Kind (Ed.), The Routledge handbook of philosophy of imagination (pp. 463–477). London: Routledge.

    Google Scholar 

  • Avigad, J. (2006). Mathematical method and proof. Synthese, 153(1), 105–159.

    Google Scholar 

  • Avigad, J. (2008a). Computers in mathematical inquiry.  In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 302–316). Oxford: Oxford University Press.

    Google Scholar 

  • Avigad, J. (2008b). Understanding proofs. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 317–353). Oxford: Oxford University Press.

    Google Scholar 

  • Avigad, J. (2020). Modularity in mathematics. The Review of Symbolic Logic, 13(1), 47–79.

    Google Scholar 

  • Avigad, J., Dean, E., & Mumma, J. (2009). A formal system for Euclid’s Elements. The Review of Symbolic Logic, 2(4), 700–768.

    Google Scholar 

  • Avigad, J., & Morris, R. L. (2014). The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression. Archive for History of Exact Sciences, 68(3), 265–326.

    Google Scholar 

  • Avigad, J., & Morris, R. L. (2016). Character and object. The Review of Symbolic Logic, 9(3), 480–510.

    Google Scholar 

  • Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12(3), 81–105.

    Google Scholar 

  • Benacerraf, P., & Putnam, H. (1964). Philosophy of mathematics: Selected readings. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Brown, J. R. (1997). Proofs and pictures. The British Journal for the Philosophy of Science, 48(2), 161–180.

    Google Scholar 

  • Brown, J. R. (1999). Philosophy of mathematics: An introduction to a world of proofs and pictures. London: Routledge.

    Google Scholar 

  • Burgess, J. P. (2015). Rigor and structure. Oxford: Oxford University Press.

    Google Scholar 

  • CadwalladerOlsker, T. (2011). What do we mean by mathematical proof? Journal of Humanistic Mathematics, 1(1), 33–60.

    Google Scholar 

  • Carter, J. (2010). Diagrams and proofs in analysis. International Studies in the Philosophy of Science, 24(1), 1–14.

    Google Scholar 

  • Carter, J. (2012). The Role of representations in mathematical reasoning. Philosophia Scientiæ, 16(1), 55–70.

    Google Scholar 

  • Carter, J. (2019). Philosophy of mathematical practice: Motivations, themes and prospects. Philosophia Mathematica, 27(1), 1–32.

    Google Scholar 

  • Cellucci, C. (2015). Mathematical beauty, understanding, and discovery. Foundations of Science, 20(4), 339–355.

    Google Scholar 

  • Colyvan, M. (2012). An introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • D’Alessandro, W. (forthcoming). Mathematical explanation beyond explanatory proof. The British Journal for the Philosophy of Science. https://doi.org/10.1093/bjps/axy009.

  • De Cruz, H., & De Smedt, J. (2013). Mathematical symbols as epistemic actions. Synthese, 190(1), 3–19.

    Google Scholar 

  • De Toffoli, S. (2017). ‘Chasing’ the diagram—The use of visualizations in algebraic reasoning. The Review of Symbolic Logic, 10(1), 158–186.

    Google Scholar 

  • De Toffoli, S., & Giardino, V. (2014). Forms and roles of diagrams in knot theory. Erkenntnis, 79(3), 829–842.

    Google Scholar 

  • De Toffoli, S., & Giardino, V. (2015). An inquiry into the practice of proving in low-dimensional topology. Boston Studies in the Philosophy and History of Science, 308, 315–336.

    Google Scholar 

  • Detlefsen, M. (2009). Proof: Its nature and significance. In B. Gold & R. A. Simons (Eds.), Proof and other dilemmas: Mathematics and philosophy (pp. 3–32). Washington, DC: The Mathematical Association of America.

    Google Scholar 

  • Detlefsen, M., & Arana, A. (2011). Purity of methods. Philosophers’ Imprint, 11(2), 1–20.

    Google Scholar 

  • Dutilh Novaes, C. (2013). Mathematical reasoning and external symbolic systems. Logique & Analyse, 56(221), 45–65.

    Google Scholar 

  • Eckes, C., & Giardino, V. (2018). The classificatory function of diagrams: Two examples from mathematics. In P. Chapman, G. Stapleton, A. Moktefi, S. Perez-Kriz, & F. Bellucci (Eds.), Diagrammatic representation and inference. Proceedings of diagrams 2018 (pp. 120–136). Cham: Springer.

  • Erbas, A. K., Alacaci, C., & Bulut, M. (2012). A comparison of mathematics textbooks from Turkey, Singapore, and the United States of America. Educational Sciences: Theory and Practice, 12(3), 2324–2329.

    Google Scholar 

  • Ernest, P. (2016). A dialogue on the ethics of mathematics. The Mathematical Intelligencer, 38(1), 69–77.

    Google Scholar 

  • Ernest, P. (Ed.). (2018). The philosophy of mathematics education today. Cham: Springer.

    Google Scholar 

  • Ernest, P., Skovsmose, O., Van Bendegem, J. P., Bicudo, M., Miarka, R., Kvasz, L., et al. (Eds.). (2016). The philosophy of mathematics education. Cham: Springer.

    Google Scholar 

  • Ferreirós, J. (2015). Mathematical knowledge and the interplay of practices. Princeton: Princeton University Press.

    Google Scholar 

  • Ferreirós, J., & Gray, J. J. (2006). The architecture of modern mathematics: Essays in history and philosophy. Oxford: Oxford University Press.

    Google Scholar 

  • Folina, J. (1999). Pictures, proofs, and “mathematical practice”: Reply to James Robert Brown. The British Journal for the Philosophy of Science, 50(3), 425–429.

    Google Scholar 

  • Folina, J. (2018). Towards a better understanding of mathematical understanding. In M. Piazza & G. Pulcini (Eds.), Truth, existence and explanation (pp. 121–146). Cham: Springer.

    Google Scholar 

  • François, K., & Van Bendegem, J. P. (2007). Philosophical dimensions in mathematics education. New York: Springer.

    Google Scholar 

  • Frans, J., & Weber, E. (2014). Mechanistic explanation and explanatory proofs in mathematics. Philosophia Mathematica, 22(2), 231–248.

    Google Scholar 

  • Geist, C., Löwe, B., & Van Kerkhove, B. (2010). Peer review and knowledge by testimony in mathematics. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 341–360). London: College Publications.

  • Giaquinto, M. (2007). Visual thinking in mathematics: An epistemological study. Oxford: Oxford University Press.

    Google Scholar 

  • Giaquinto, M. (2011). Crossing curves: A limit to the use of diagrams in proofs. Philosophia Mathematica, 19(3), 281–307.

    Google Scholar 

  • Giaquinto, M. (2016). The epistemology of visual thinking in mathematics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/epistemology-visual-thinking/.

  • Giardino, V. (2017a). Diagrammatic reasoning in mathematics. In L. Magnani & T. Bertolotti (Eds.), Springer handbook of model-based science (pp. 499–522). Cham: Springer.

    Google Scholar 

  • Giardino, V. (2017b). The practical turn in philosophy of mathematics: A portrait of a young discipline. Phenomenology and Mind, 12, 18–28.

    Google Scholar 

  • Giardino, V., Moktefi, A., Mols, S., & Van Bendegem, J. P. (2012). Introduction: From practice to results in logic and mathematics. Philosophia Scientiæ, 16(1), 5–11.

    Google Scholar 

  • Grosholz, E. R. (2007). Representation and productive ambiguity in mathematics and the sciences. Oxford: Oxford University Press.

    Google Scholar 

  • Hafner, J., & Mancosu, P. (2005). The varieties of mathematical explanation. In P. Mancosu, K. F. Jørgensen, & S. A. Pedersen (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 215–250). Dordrecht: Springer.

    Google Scholar 

  • Hafner, J., & Mancosu, P. (2008). Beyond unification. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 151–178). Oxford: Oxford University Press.

    Google Scholar 

  • Hahn, H. (1933/1980). The crisis in intuition. In B. McGuinness (Ed.), Empiricism, logic and mathematics: Philosophical papers (pp. 73–102). Dordrecht: D. Reidel.

    Google Scholar 

  • Hamami, Y. (2018). Mathematical inference and logical inference. The Review of Symbolic Logic, 11(4), 665–704.

    Google Scholar 

  • Hamami, Y. (forthcoming). Mathematical rigor and proof. The Review of Symbolic Logic. https://doi.org/10.1017/S1755020319000443.

  • Hamami, Y., & Morris, R. L. (forthcoming). Plans and planning in mathematical proofs. The Review of Symbolic Logic, 1–31.

  • Hamami, Y., Mumma, J., & Amalric, M. (submitted). Reasoning with diagrams in elementary Euclidean geometry: A role for counterexample search. Manuscript submitted for publication.

  • Hanna, G. (2018). Reflections on proof as explanation. In A. J. Stylianides & G. Harel (Eds.), Advances in mathematics education research on proof and proving: An international perspective (pp. 3–18). Cham: Springer Nature.

    Google Scholar 

  • Inglis, M., & Aberdein, A. (2014). Beauty is not simplicity: An analysis of mathematicians’ proof appraisals. Philosophia Mathematica, 23(1), 87–109.

    Google Scholar 

  • Inglis, M., & Mejía-Ramos, J. P. (2019). Functional explanation in mathematics. Synthese. https://doi.org/10.1007/s11229-019-02234-5.

    Article  Google Scholar 

  • Islami, A., & Longo, G. (2017). Marriages of mathematics and physics: A challenge for biology. Progress in Biophysics and Molecular Biology, 131, 179–192.

    Google Scholar 

  • Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–549.

    Google Scholar 

  • Kitcher, P. (1984). The nature of mathematical knowledge. New York: Oxford University Press.

    Google Scholar 

  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. C. Salmon (Eds.), Scientific explanation (pp. 410–505). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (J. Worrall & E. Zahar, Eds.). Cambridge: Cambridge University Press.

  • Lange, M. (2009). Why proofs by mathematical induction are generally not explanatory. Analysis, 69(2), 203–211.

    Google Scholar 

  • Lange, M. (2014). Aspects of mathematical explanation: Symmetry, unity, and salience. The Philosophical Review, 123(4), 485–531.

    Google Scholar 

  • Lange, M. (2016). Explanatory proofs and beautiful proofs. Journal of Humanistic Mathematics, 6(1), 8–51.

    Google Scholar 

  • Larvor, B. (2012). How to think about informal proofs. Synthese, 187(2), 715–730.

    Google Scholar 

  • Larvor, B. (Ed.). (2016a). Mathematical cultures: The London meetings 2012–2014. Basel: Birkhäuser.

    Google Scholar 

  • Larvor, B. (2016b). Why the naïve derivation recipe model cannot explain how mathematicians’ proofs secure mathematical knowledge. Philosophia Mathematica, 24(3), 401–404.

    Google Scholar 

  • Lehet, E. (forthcoming). Induction and explanatory definitions in mathematics. Synthese. https://doi.org/10.1007/s11229-019-02095-y.

  • Leitgeb, H. (2009). On formal and informal provability. In Ø. Linnebo (Ed.), New waves in philosophy of mathematics (pp. 263–299). New York: Palgrave Macmillan.

    Google Scholar 

  • Löwe, B., & Müller, T. (Eds.). (2010). PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice. London: College Publications.

    Google Scholar 

  • Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer-Verlag.

    Google Scholar 

  • Macbeth, D. (2012a). Proof and understanding in mathematical practice. Philosophia Scientiæ, 16(1), 29–54.

    Google Scholar 

  • Macbeth, D. (2012b). Seeing how it goes: Paper-and-pencil reasoning in mathematical practice. Philosophia Mathematica, 20(1), 58–85.

    Google Scholar 

  • Macbeth, D. (2014). Realizing reason: A narrative of truth and knowing. Oxford: Oxford University Press.

    Google Scholar 

  • Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.

    Google Scholar 

  • Mancosu, P., Jørgensen, K. F., & Pedersen, S. A. (Eds.). (2005). Visualization, explanation and reasoning styles in mathematics. Dordrecht: Springer.

    Google Scholar 

  • Manders, K. (2008). The Euclidean diagram (1995). In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). Oxford: Oxford University Press.

    Google Scholar 

  • Miller, N. (2007). Euclid and his twentieth century rivals: Diagrams in the logic of euclidean geometry. Stanford: CSLI Publications.

    Google Scholar 

  • Morris, R. L. (2020). Motivated Proofs: What they are, why they matter and how to write them. The Review of Symbolic Logic, 13(1), 23–46.

    Google Scholar 

  • Morris, R. L. (forthcoming). Do mathematical explanations have instrumental value? Synthese. https://doi.org/10.1007/s11229-019-02114-y.

  • Müller-Hill, E. (2009). Formalizability and knowledge ascriptions in mathematical practice. Philosophia Scientiæ, 13(2), 21–43.

    Google Scholar 

  • Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. Ph.D. Thesis, Carnegie Mellon University.

  • Mumma, J. (2010). Proofs, pictures and Euclid. Synthese, 175(2), 255–287.

    Google Scholar 

  • Mumma, J., & Panza, M. (2012). Diagrams in mathematics: History and philosophy [Special Issue]. Synthese, 186(1).

  • Muntersbjorn, M. M. (1999). Naturalism, notation, and the metaphysics of mathematics. Philosophia Mathematica, 7(2), 178–199.

    Google Scholar 

  • Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.

    Google Scholar 

  • Panza, M. (2012). The twofold role of diagrams in Euclid’s plane geometry. Synthese, 186(1), 55–102.

    Google Scholar 

  • Pasch, M. (1882). Vorlesungen über Neuere Geometrie. Leipzig: B. G. Teubner.

    Google Scholar 

  • Pease, A., Aberdein, A., & Martin, U. (2019). Explanation in mathematical conversations: An empirical investigation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2140), 20180159.

    Google Scholar 

  • Pincock, C. (2012). Mathematics and scientific representation. Oxford: Oxford University Press.

    Google Scholar 

  • Pincock, C. (2015). The Unsolvability of the quintic: A Case study in abstract mathematical explanation. Philosophers’ Imprint, 15(3), 1–19.

    Google Scholar 

  • Pólya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton: Princeton University Press.

    Google Scholar 

  • Pólya, G. (1954). Mathematics and plausible reasoning (two volumes). Princeton: Princeton University Press.

    Google Scholar 

  • Pólya, G. (1962). Mathematical discovery: On understanding, learning, and teaching problem solving (two volumes). New York: Wiley.

    Google Scholar 

  • Presmeg, N. (2006). Research on visualization in learning and teaching mathematics: Emergence from psychology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 205–235). Rotterdam: Sense Publishers.

    Google Scholar 

  • Raman-Sundström, M., & Öhman, L. D. (2018). Mathematical fit: A case study. Philosophia Mathematica, 26(2), 184–210.

    Google Scholar 

  • Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(3), 5–41.

    Google Scholar 

  • Resnik, M. D., & Kushner, D. (1987). Explanation, independence and realism in mathematics. The British Journal for the Philosophy of Science, 38(2), 141–158.

    Google Scholar 

  • Rittberg, C. J., Tanswell, F. S., & Van Bendegem, J. P. (forthcoming). Epistemic injustice in mathematics. Synthese. https://doi.org/10.1007/s11229-018-01981-1.

  • Rogers, P., & Kaiser, G. (1995). Equity in mathematics education: Influences of feminism and culture. London: Falmer Press.

    Google Scholar 

  • Rota, G. C. (1997). The phenomenology of mathematical beauty. Synthese, 111(2), 171–182.

    Google Scholar 

  • Schlimm, D. (2013). Axioms in mathematical practice. Philosophia Mathematica, 21(1), 37–92.

    Google Scholar 

  • Schlimm, D., & Neth, H. (2008). Modeling ancient and modern arithmetic practices: Addition and multiplication with Arabic and Roman numerals. In Proceedings of the 30th annual conference of the cognitive science society (pp. 2097–2102). Austin, TX: Cognitive Science Society.

  • Shapiro, S. (2000). Thinking about mathematics: The philosophy of mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Sieg, W. (2010). Searching for proofs (and uncovering capacities of the mathematical mind). In S. Feferman & W. Sieg (Eds.), Proofs, categories and computations: Essays in honor of Grigori Mints (pp. 189–215). London: College Publications.

    Google Scholar 

  • Sinclair, N. (2004). The roles of the aesthetic in mathematical inquiry. Mathematical Thinking and Learning, 6(3), 261–284.

    Google Scholar 

  • Starikova, I. (2010). Why do mathematicians need different ways of presenting mathematical objects? The case of Cayley graphs. Topoi, 29, 41–51.

    Google Scholar 

  • Starikova, I. (2012). From practice to new concepts: Geometric properties of groups. Philosophia Scientiæ, 16(1), 129–151.

    Google Scholar 

  • Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34(2), 135–151.

    Google Scholar 

  • Tanswell, F. S. (2015). A problem with the dependence of informal proofs on formal proofs. Philosophia Mathematica, 23(3), 295–310.

    Google Scholar 

  • Tanswell, F. S. (2016). Proof, rigour and informality: A virtue account of mathematical knowledge. Ph.D. thesis, University of St Andrews.

  • Tappenden, J. (2008). Mathematical concepts and definitions. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 256–275). Oxford: Oxford University Press.

    Google Scholar 

  • Tappenden, J. (2012). Fruitfulness as a theme in the philosophy of mathematics. The Journal of Philosophy, 109(1–2), 204–219.

    Google Scholar 

  • Thomas, R. S. D. (2017). Beauty is not all there is to aesthetics in mathematics. Philosophia Mathematica, 25(1), 116–127.

    Google Scholar 

  • Urquhart, A. (2008a). Mathematics and physics: Strategies of assimilation. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 417–440). Oxford: Oxford University Press.

    Google Scholar 

  • Urquhart, A. (2008b). The boundary between mathematics and physics. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 407–416). Oxford: Oxford University Press.

    Google Scholar 

  • Van Bendegem, J. P. (2014). The impact of the philosophy of mathematical practice on the philosophy of mathematics. In L. Soler, S. Zwart, & M. Lynch (Eds.), After the practice turn in the philosophy, history, and social studies of science (pp. 215–226). New York: Routledge.

    Google Scholar 

  • Van Bendegem, J. P., & Van Kerkhove, B. (2004). The unreasonable richness of mathematics. Journal of Cognition and Culture, 4(3–4), 525–549.

    Google Scholar 

  • Van Kerkhove, B. (Ed.). (2009). New perspectives on mathematical practices: Essays in philosophy and history of mathematics. Singapore: World Scientific Printers.

    Google Scholar 

  • Van Kerkhove, B., & Van Bendegem, J. P. (Eds.). (2007). Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education. Dordrecht: Springer.

    Google Scholar 

  • Wagner, R. (2017). Making and breaking mathematical sense: Histories and philosophies of mathematical practice. Princeton: Princeton University Press.

    Google Scholar 

  • Walton, D. N. (1998). The new dialectic: Conversational contexts of argument. Toronto: University of Toronto Press.

    Google Scholar 

  • Weber, E., & Verhoeven, L. (2002). Explanatory proofs in mathematics. Logique & Analyse, 45(179–180), 9–180.

    Google Scholar 

  • Wilder, R. L. (1950). The cultural basis of mathematics. Proceedings of the International Congress of Mathematicians, 1, 258–271.

    Google Scholar 

  • Wilder, R. L. (1981). Mathematics as a cultural system. Oxford: Pergamon Press Ltd.

    Google Scholar 

  • Wilson, M. (2006). Wandering significance: An essay on conceptual behavior. Oxford: Clarendon Press.

    Google Scholar 

  • Yap, A. (2011). Gauss’ quadratic reciprocity theorem and mathematical fruitfulness. Studies in History and Philosophy of Science Part A, 42(3), 410–415.

    Google Scholar 

Download references

Acknowledgements

We are grateful to three anonymous reviewers for helpful feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Lea Morris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamami, Y., Morris, R.L. Philosophy of mathematical practice: a primer for mathematics educators. ZDM Mathematics Education 52, 1113–1126 (2020). https://doi.org/10.1007/s11858-020-01159-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-020-01159-5

Navigation