Skip to main content
Log in

Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma

  • Gynecologic Cancers (JS Ferriss, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Ovarian cancer (OC), especially high-grade serous cancer (HGSC), is a highly heterogeneous malignancy with limited options for curative treatment and a high frequency of relapse. Interactions between OC and the immune system may permit immunoediting and immune escape, and current standard of care therapies can influence immune cell infiltration and function within the tumor microenvironment. Natural killer (NK) cells are involved in cancer immunosurveillance and immunoediting and can be activated by therapy, but deliberate approaches to maximize NK cell reactivity for treatment of HGSC are in their infancy. NK cells may be the ideal target for immunotherapy of HGSC. The diverse functions of NK cells, and their established roles in immunosurveillance, make them attractive candidates for more precise and effective HGSC treatment. NK cells’ functional capabilities differ because of variation in receptor expression and genetics, with meaningful impacts on their anticancer activity. Studying HGSC:NK cell interactions will define the features that predict the best outcomes for patients with the disease, but the highly diverse nature of HGSC will likely require combination therapies or approaches to simultaneously target multiple, co-existing features of the tumor to avoid tumor escape and relapse. We expect that the ideal therapy will enable NK cell infiltration and activity, reverse immunosuppression within the tumor microenvironment, and enable effector functions against the diverse subpopulations that comprise HGSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

  1. West K, Borley J. Ovarian, fallopian tube and primary peritoneal cancer: an overview. Obstetrics, Gynaecology & Reproductive Medicine. 2020;30(12):380–6. https://doi.org/10.1016/j.ogrm.2020.10.001.

    Article  Google Scholar 

  2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96. https://doi.org/10.3322/caac.21456.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koshiyama M, Matsumura N, Konishi I. Recent concepts of ovarian carcinogenesis: Type i and type ii. BioMed Research International. 2014;2014:934261. https://doi.org/10.1155/2014/934261.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460(3):237–49. https://doi.org/10.1007/s00428-012-1203-5.

    Article  PubMed  Google Scholar 

  5. Bast RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer. 2009;9(6):415–28. https://doi.org/10.1038/nrc2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Burg MEL, van Lent M, Buyse M, Kobierska A, Colombo N, Favalli G, Lacave AJ, Nardi M, Renard J, Pecorelli S. The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian cancer. New England Journal of Medicine. 1995;332(10):629–34. https://doi.org/10.1056/nejm199503093321002.

    Article  Google Scholar 

  7. Lee EK, Matulonis UA. Emerging drugs for the treatment of ovarian cancer: a focused review of parp inhibitors. Expert Opin Emerg Drugs. 2020;25(2):165–88. https://doi.org/10.1080/4728214.2020.1773791.

    Article  CAS  PubMed  Google Scholar 

  8. Fuh KC, Secord AA, Bevis KS, Huh W, ElNaggar A, Blansit K, Previs R, Tillmanns T, Kapp DS, Chan JK. Comparison of bevacizumab alone or with chemotherapy in recurrent ovarian cancer patients. Gynecol Oncol. 2015;139(3):413–8. https://doi.org/10.1016/j.ygyno.2015.06.041.

    Article  CAS  PubMed  Google Scholar 

  9. Mirza MR, Coleman RL, Gonzalez-Martin A, Moore KN, Colombo N, Ray-Coquard I, Pignata S. The forefront of ovarian cancer therapy: update on parp inhibitors. Ann Oncol. 2020;31(9):1148–59. https://doi.org/10.1016/j.annonc.2020.06.004.

    Article  CAS  PubMed  Google Scholar 

  10. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, Sehouli J, Colombo N, Gonzalez-Martin A, Oaknin A, Ottevanger PB, Rudaitis V, Katchar K, Wu H, Keefe S, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase ii keynote-100 study. Ann Oncol. 2019;30(7):1080–7. https://doi.org/10.1093/annonc/mdz135.

  11. Clouthier DL, Lien SC, Yang SYC, Nguyen LT, Manem VSK, Gray D, Ryczko M, Razak ARA, Lewin J, Lheureux S, Colombo I, Bedard PL, Cescon D, Spreafico A, Butler MO, Hansen AR, Jang RW, Ghai S, Weinreb I, et al. An interim report on the investigator-initiated phase 2 study of pembrolizumab immunological response evaluation (inspire). J Immunother Cancer. 2019;7(1):72. https://doi.org/10.1186/s40425-019-0541-0.

  12. Liu J, Wang Y, Yuan S, Wei J, Bai J. Construction of an immune cell infiltration score to evaluate the prognosis and therapeutic efficacy of ovarian cancer patients. Front Immunol. 2021;12:751594. https://doi.org/10.3389/fimmu.2021.751594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nersesian S, Lee SN, Grantham SR, Meunier L, Communal L, Arnason T, Nelson BH, Mes-Masson AM, Boudreau JE, Boudreau JE. Cd16ahigh nk cell infiltration and spatial relationships with t cells and macrophages can predict improved progression-free survival in high grade ovarian cancer. MedRxiv. 2021. https://doi.org/10.1101/2021.06.08.21258566.

  14. Laumont CM, Wouters MCA, Smazynski J, Gierc NS, Chavez EA, Chong LC, Thornton S, Milne K, Webb JR, Steidl C, Nelson BH. Single-cell profiles and prognostic impact of tumor-infiltrating lymphocytes coexpressing cd39, cd103, and pd-1 in ovarian cancer. Clin Cancer Res. 2021;27(14):4089–100. https://doi.org/10.1158/1078-0432.CCR-20-4394.

    Article  CAS  PubMed  Google Scholar 

  15. Kroeger DR, Milne K, Nelson BH. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic t-cell responses, and superior prognosis in ovarian cancer. Clin Cancer Res. 2016;22(12):3005–15. https://doi.org/10.1158/1078-0432.CCR-15-2762.

    Article  CAS  PubMed  Google Scholar 

  16. Gaudreau PO, Allard B, Turcotte M, Stagg J. Cd73-adenosine reduces immune responses and survival in ovarian cancer patients. Oncoimmunology. 2016;5(5):e1127496. https://doi.org/10.1080/2162402X.2015.1127496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, Milea A, Sowamber R, Katz SR, Bernardini MQ, Clarke BA, Shaw PA, Lang PA, Berman HK, Pugh TJ, et al. A distinct innate lymphoid cell population regulates tumor-associated t cells. Nat Med. 2017;23(3):368–75. https://doi.org/10.1038/nm.4278.

  18. Banville AC, Wouters MCA, Oberg AL, Goergen KM, Maurer MJ, Milne K, Ashkani J, Field E, Ghesquiere C, Jones SJM, Block MS, Nelson BH. Co-expression patterns of chimeric antigen receptor (car)-t cell target antigens in primary and recurrent ovarian cancer. Gynecol Oncol. 2021;160(2):520–9. https://doi.org/10.1016/j.ygyno.2020.12.005.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan S, LeDoux S, Cochrane DR, Lim JLP, Yang W, Roth A, Smith MA, Ho J, Tse K, Zeng T, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 2018;173(7):1755–1769 e22. https://doi.org/10.1016/j.cell.2018.03.073.

  20. Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nat Commun. 2021;12(1):3039. https://doi.org/10.1038/s41467-021-23171-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarivalasis A, Morotti M, Mulvey A, Imbimbo M, Coukos G. Cell therapies in ovarian cancer. Ther Adv Med Oncol. 2021;13:17588359211008399. https://doi.org/10.1177/17588359211008399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Testa U, Petrucci E, Pasquini L, Castelli G, Pelosi E. Ovarian cancers: genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines (Basel). 2018;5(1). https://doi.org/10.3390/medicines5010016.

  23. Schuijer M, Berns EMJJ. Tp53 and ovarian cancer. Human Mutation. 2003;21(3):285–91. https://doi.org/10.1002/humu.10181.

    Article  CAS  PubMed  Google Scholar 

  24. Alexandrov, LB, Nik-Zainal, S, Wedge, DC, Aparicio, SAJR, Behjati, S, Biankin, AV, Bignell, GR, Bolli, N, Borg, A, Børresen-Dale, A-L, Boyault, S, Burkhardt, B, Butler, AP, Caldas, C, Davies, HR, Desmedt, C, Eils, R, Eyfjörd, JE, Foekens, JA, Greaves, M, Hosoda, F, Hutter, B, Ilicic, T, Imbeaud, S, Imielinski, M, Jäger, N, Jones, DTW, Jones, D, Knappskog, S, Kool, M, Lakhani, SR, López-Otín, C, Martin, S, Munshi, NC, Nakamura, H, Northcott, PA, Pajic, M, Papaemmanuil, E, Paradiso, A, Pearson, JV, Puente, XS, Raine, K, Ramakrishna, M, Richardson, AL, Richter, J, Rosenstiel, P, Schlesner, M, Schumacher, TN, Span, PN, Teague, JW, Totoki, Y, Tutt, ANJ, Valdés-Mas, R, van Buuren, MM, van ’t Veer, L, Vincent-Salomon, A, Waddell, N, Yates, LR, Zucman-Rossi, J, Andrew Futreal, P, McDermott, U, Lichter, P, Meyerson, M, Grimmond, SM, Siebert, R, Campo, E, Shibata, T, Pfister, SM, Campbell, PJ, Stratton, MR, Australian Pancreatic Cancer Genome, I, Consortium, IBC, Consortium, IM-S, PedBrain, I, Signatures of mutational processes in human cancer, Nature 500(7463) (2013) 415-421. https://doi.org/10.1038/nature12477

  25. Cancer Genome Atlas Research. N, Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166.

    Article  CAS  Google Scholar 

  26. Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nature Communications. 2021;12(1):3039. https://doi.org/10.1038/s41467-021-23171-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee S, Zhao L, Rojas C, Bateman NW, Yao H, Lara OD, Celestino J, Morgan MB, Nguyen TV, Conrads KA, Rangel KM, Dood RL, Hajek RA, Fawcett GL, Chu RA, Wilson K, Loffredo JL, Viollet C, Jazaeri AA, et al. Molecular analysis of clinically defined subsets of high-grade serous ovarian cancer. Cell Rep. 2020;31(2):107502. https://doi.org/10.1016/j.celrep.2020.03.066.

  28. Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, Fereday S, Lawrence M, Carter SL, Mermel CH, Kostic AD, Etemadmoghadam D, Saksena G, Cibulskis K, Duraisamy S, Levanon K, Sougnez C, Tsherniak A, Gomez S, et al. Cancer Genome Atlas Research, N, Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25. https://doi.org/10.1172/JCI65833.

  29. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nature Communications. 2013;4(1):2126. https://doi.org/10.1038/ncomms3126.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening cancer immunotherapy: When engineering approaches meet artificial intelligence. Adv Sci (Weinh). 2020;7(19):2001447. https://doi.org/10.1002/advs.202001447.

    Article  CAS  Google Scholar 

  31. Rodenhizer D, Dean T, Xu B, Cojocari D, McGuigan AP. A three-dimensional engineered heterogeneous tumor model for assessing cellular environment and response. Nat Protoc. 2018;13(9):1917–57. https://doi.org/10.1038/s41596-018-0022-9.

    Article  CAS  PubMed  Google Scholar 

  32. Ayuso JM, Rehman S, Virumbrales-Munoz M, McMinn PH, Geiger P, Fitzgerald C, Heaster T, Skala MC, Beebe DJ. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on nk cell exhaustion, Science. Advances. 2021;17(7):eabc2331. https://doi.org/10.1126/sciadv.abc2331.

    Article  CAS  Google Scholar 

  33. Wang Y, Jin R, Shen B, Li N, Zhou H, Wang W, Zhao Y, Huang M, Fang P, Wang S, Mary P, Wang R, Ma P, Li R, Tian Y, Cao Y, Li F, Schwieizer L, Zhang H. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Science Advances 7. 2021:eabe3839. https://doi.org/10.1126/sciadv.abe3839.

  34. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of h-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675–8. https://doi.org/10.1038/319675a0.

    Article  CAS  PubMed  Google Scholar 

  35. Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: a primer for the non-immunologist. Blood Reviews. 2017;31(2):1–10. https://doi.org/10.1016/j.blre.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  36. Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S. Epigenetic modification and antibody-dependent expansion of memory-like nk cells in human cytomegalovirus-infected individuals. Immunity. 2015;42(3):431–42. https://doi.org/10.1016/j.immuni.2015.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, Haigwood NL, Blish CA, Akbar AN, Paust S. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol. 2019;4(35). https://doi.org/10.1126/sciimmunol.aat8116.

  38. Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, Haigwood NL, Blish CA, Akbar AN, Paust S. Human natural killer cells mediate adaptive immunity to viral antigens. Science Immunology. 2019;4(35):eaat8116. https://doi.org/10.1126/sciimmunol.aat8116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee Y-S, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Science Translational Medicine. 2016;8(357):357ra123-357ra123. https://doi.org/10.1126/scitranslmed.aaf2341.

    Article  CAS  Google Scholar 

  40. Marin ND, Krasnick BA, Becker-Hapak M, Conant L, Goedegebuure SP, Berrien-Elliott MM, Robbins KJ, Foltz JA, Foster M, Wong P, Cubitt CC, Tran J, Wetzel CB, Jacobs M, Zhou AY, Russler-Germain D, Marsala L, Schappe T, Fields RC, Fehniger TA. Memory-like differentiation enhances nk cell responses to melanoma. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-21-0851.

  41. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends in Immunology. 2018;39(3):222–39. https://doi.org/10.1016/j.it.2017.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gasser S. DNA damage response and development of targeted cancer treatments. Annals of Medicine. 2007;39(6):457–64. https://doi.org/10.1080/07853890701436773.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, Azimi CS, Scheer AK, Randolph HE, Thompson TW, Zhang L, Iannello A, Mathur N, Jardine KE, Kirn GA, Bell JC, McBurney MW, Raulet DH, Ardolino M. Contribution of nk cells to immunotherapy mediated by pd-1/pd-l1 blockade. J Clin Invest. 2018;128(10):4654–68. https://doi.org/10.1172/JCI99317.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R. Human nk cells in acute myeloid leukaemia patients: Analysis of nk cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011;60(8):1195–205. https://doi.org/10.1007/s00262-011-1050-2.

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Banas H, Casas-Aviles I, Duran E, Alonso C, Solana R, Tarazona R. Dnam-1 and the tigit/pvrig/tactile axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel). 2019;11(6). https://doi.org/10.3390/cancers11060877.

  46. Boudreau JE, Hsu KC. Natural killer cell education in human health and disease. Current Opinion in Immunology. 2018;50:102–11. https://doi.org/10.1016/j.coi.2017.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crome S, Nguyen L, López-Vergès S, Yang SYC, Martin B, Yam J, Johnson D, Nie J, Pniak M, Yen P, Milea A, Sowamber R, Katz S, Bernardini M, Clarke B, Shaw P, Lang P, Berman H, Pugh T, Ohashi P. A distinct innate lymphoid cell population regulates tumor-associated t cells. Nature Medicine. 2017;23. https://doi.org/10.1038/nm.4278.

  48. Nersesian S, Schwartz SL, Grantham SR, MacLean LK, Lee SN, Pugh-Toole M, Boudreau JE. Nk cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol. 2021;14(1):100930. https://doi.org/10.1016/j.tranon.2020.100930.

    Article  PubMed  Google Scholar 

  49. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA. Genetic and environmental determinants of human nk cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. https://doi.org/10.1126/scitranslmed.3006702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith SL, Philippa RK, Stacey KB, Worboys JD, Yarwood A, Seo S, Hegewisch Solloa E, Mistretta B, Chatterjee SS, Gunaratne P, Allette K, Wang Y-C, Laird Smith M, Sebra R, Mace EM, Horowitz A, Thomson W, Martin P, Eyre S, Davis DM. Diversity of periphal blood human nk cells identified by single-cell rna sequencing. Blood Adv. 2020;4(7):1388–406. https://doi.org/10.1182/bloodadvances.2019000699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner JA, Berrien-Elliott MM, Rosario M, Leong JW, Jewell BA, Schappe T, Abdel-Latif S, Fehniger TA. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and fcgammariiia-triggered responses. Biol Blood Marrow Transplant. 2017;23(3):398–404. https://doi.org/10.1016/j.bbmt.2016.11.018.

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181–192.e5. https://doi.org/10.1016/j.stem.2018.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miller JS, Bjordahl R, Gaidarova S, Mahmood S, Rogers P, Moyar G, Blazar BR, Kaufman DS, Valamehr B, Cichocki F. Ipsc-derived nk cells synergize with t cells and anti-pd-1 antibody to mediate durable anti-tumor responses in vivo. Blood. 2019;134(Supplement_1):1933–3. https://doi.org/10.1182/blood-2019-124961.

  54. Shah N, Li L, McCarty J, Kaur I, Yvon E, Shaim H, Muftuoglu M, Liu E, Orlowski RZ, Cooper L, Lee D, Parmar S, Cao K, Sobieiski C, Saliba R, Hosing C, Ahmed S, Nieto Y, Bashir Q, et al. Phase i study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017;177(3):457–66. https://doi.org/10.1111/bjh.14570.

  55. Gasser S, Raulet DH. The DNA damage response arouses the immune system. Cancer Research. 2006;66(8):3959–62. https://doi.org/10.1158/0008-5472.Can-05-4603.

    Article  CAS  PubMed  Google Scholar 

  56. Xing S. Ferrari de Andrade, L, Nkg2d and mica/b shedding: a ‘tag game’ between nk cells and malignant cells. Clin Transl Immunology. 2020;9(12):e1230. https://doi.org/10.1002/cti2.1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Le Luduec J-B, Boudreau JE, Freiberg JC, Hsu KC. Novel approach to cell surface discrimination between kir2dl1 subtypes and kir2ds1 identifies hierarchies in nk repertoire, education, and tolerance. Frontiers in Immunology. 2019;10(734). https://doi.org/10.3389/fimmu.2019.00734.

  58. Shaffer BC, Le Luduec JB, Park S, Devlin S, Archer A, Davis E, Cooper C, Nhaissi M, Suri B, Wells D, Tamari R, Papadopoulos E, Jakubowski AA, Giralt S, Hsu KC. Prospective kir genotype evaluation of hematopoietic cell donors is feasible with potential to benefit patients with aml. Blood Adv. 2021;5(7):2003–11. https://doi.org/10.1182/bloodadvances.2020002701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morales-Estevez C, De la Haba-Rodriguez J, Manzanares-Martin B, Porras-Quintela I, Rodriguez-Ariza A, Moreno-Vega A, Ortiz-Morales MJ, Gomez-Espana MA, Cano-Osuna MT, Lopez-Gonzalez J, Chia-Delgado B, Gonzalez-Fernandez R, Aranda-Aguilar E. Kir genes and their ligands predict the response to anti-egfr monoclonal antibodies in solid tumors. Front Immunol. 2016;7:561. https://doi.org/10.3389/fimmu.2016.00561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, Modak S, Heller G, Dupont B, Cheung NK, Hsu KC. Unlicensed nk cells target neuroblastoma following anti-gd2 antibody treatment. J Clin Invest. 2012;122(9):3260–70. https://doi.org/10.1172/JCI62749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E. B7-h6-mediated downregulation of nkp30 in nk cells contributes to ovarian carcinoma immune escape. OncoImmunology. 2015;4(4):e1001224. https://doi.org/10.1080/2162402X.2014.1001224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y-J, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes & Diseases. 2018;5(3):194–203. https://doi.org/10.1016/j.gendis.2018.05.003.

    Article  CAS  Google Scholar 

  63. Konner JA, Bell-McGuinn KM, Sabbatini P, Hensley ML, Tew WP, Pandit-Taskar N, Els NV, Phillips MD, Schweizer C, Weil SC, Larson SM, Old LJ. Farletuzumab, a humanized monoclonal antibody against folate receptor α, in epithelial ovarian cancer: a phase i study. Clinical Cancer Research. 2010;16(21):5288–95. https://doi.org/10.1158/1078-0432.Ccr-10-0700.

    Article  CAS  PubMed  Google Scholar 

  64. Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nature Reviews Clinical Oncology. 2020;17(6):349–59. https://doi.org/10.1038/s41571-020-0339-5.

    Article  PubMed  Google Scholar 

  65. Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies. Clin Transl Med. 2020;10(1):199–223. https://doi.org/10.1002/ctm2.24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Au KK, Le Page C, Ren R, Meunier L, Clement I, Tyrishkin K, Peterson N, Kendall-Dupont J, Childs T, Francis JA, Graham CH, Craig AW, Squire JA, Mes-Masson AM, Koti M. Stat1-associated intratumoural th1 immunity predicts chemotherapy resistance in high-grade serous ovarian cancer. J Pathol Clin Res. 2016;2(4):259–70. https://doi.org/10.1002/cjp2.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu Y, Tian Z, Wei H. Developmental and functional control of natural killer cells by cytokines. Front Immunol. 2017;8:930. https://doi.org/10.3389/fimmu.2017.00930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, et al. Impaired hla class i antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7(12):1420–35. https://doi.org/10.1158/2159-8290.CD-17-0593.

  69. Poznanski SM, Nham T, Chew MV, Lee AJ, Hammill JA, Fan IY, Butcher M, Bramson JL, Lee DA, Hirte HW, Ashkar AA. Expanded cd56(superbright)cd16(+) nk cells from ovarian cancer patients are cytotoxic against autologous tumor in a patient-derived xenograft murine model. Cancer Immunol Res. 2018;6(10):1174–85. https://doi.org/10.1158/2326-6066.CIR-18-0144.

    Article  CAS  PubMed  Google Scholar 

  70. Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, Massuger LF, Jansen JH, Hobo W, Dolstra H. Tigit blockade enhances functionality of peritoneal nk cells with altered expression of dnam-1/tigit/cd96 checkpoint molecules in ovarian cancer. Oncoimmunology. 2020;9(1):1843247. https://doi.org/10.1080/2162402X.2020.1843247.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bareche Y, Pommey S, Carneiro M, Buisseret L, Cousineau I, Thebault P, Chrobak P, Communal L, Allard D, Robson SC, Mes-Masson AM, Provencher D, Lapointe R, Stagg J. High-dimensional analysis of the adenosine pathway in high-grade serous ovarian cancer. J Immunother Cancer. 2021;9(3). https://doi.org/10.1136/jitc-2020-001965.

  72. S.M. P, Singh K, Ritchier TM, Aguiar JA, Fan IY, Portillo AL, Rojas EA, Vahaedi F, El-Sayes A, Xing S, Butcher M, Lu Y, Doxey AC, Schertzer JD, Hirte HW, Ashkar AA. Metabolic flexibility determines human nk cell functional fate in the tumor microenvironment. Cell Metab. 2021;33:1–16. https://doi.org/10.1016/j.cmet.2021.03.023.

    Article  CAS  Google Scholar 

  73. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz EM, Kantari-Mimoun C, Chikdene N, Meinecke A-K, Schrödter K, Helfrich I, Fandrey J, Sexl V, Stockmann C. Targeting vegf-a in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nature Communications. 2016;7(1):12528. https://doi.org/10.1038/ncomms12528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Curtarello M, Tognon M, Venturoli C, Silic-Benussi M, Grassi A, Verza M, Minuzzo S, Pinazza M, Brillo V, Tosi G, Ferrazza R, Guella G, Iorio E, Godfroid A, Sounni NE, Amadori A, Indraccolo S. Rewiring of lipid metabolism and storage in ovarian cancer cells after anti-vegf therapy. Cells. 2019;8(12). https://doi.org/10.3390/cells8121601.

  75. Sheppard S, Santosa EK, Lau CM, Violante S, Giovanelli P, Kim H, Cross JR, Li MO, Sun JC. Lactate dehydrogenase a-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 2021;35(9):109210. https://doi.org/10.1016/j.celrep.2021.109210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, Rojas EA, Vahedi F, El-Sayes A, Xing S, Butcher M, Lu Y, Doxey AC, Schertzer JD, Hirte HW, Ashkar AA. Metabolic flexibility determines human nk cell functional fate in the tumor microenvironment. Cell Metabolism. 2021;33(6):1205–1220.e5. https://doi.org/10.1016/j.cmet.2021.03.023.

    Article  CAS  PubMed  Google Scholar 

  77. Hodeib M, O’Grodzinski MP, Vergnes L, Reue K, Karlan BY, Lunt SY, Aspuria PJ. Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells. Oncotarget. 2018;9:4044–60.

    Article  Google Scholar 

  78. Chae C-S, Teran-Cabanillas E, Cubillos-Ruiz JR. Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunology, Immunotherapy. 2017;66(8):969–77. https://doi.org/10.1007/s00262-017-1958-2.

    Article  CAS  PubMed  Google Scholar 

  79. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (time) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krockenberger M, Kranke P, Häusler S, Engel JB, Horn E, Nürnberger K, Wischhusen J, Dietl J, Hönig A. Macrophage migration-inhibitory factor levels in serum of patients with ovarian cancer correlates with poor prognosis. Anticancer Res. 2012;32(12):5233–8.

    CAS  PubMed  Google Scholar 

  81. Zucha MA, Wu ATH, Lee WH, Wang LS, Lin WW, Yuan CC, Yeh CT. Bruton’s tyrosine kinase (btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6(15):13255–68. https://doi.org/10.18632/oncotarget.3658.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS, Geller MA. Il-15 super-agonist (alt-803) enhances natural killer (nk) cell function against ovarian cancer. Gynecol Oncol. 2017;145(3):453–61. https://doi.org/10.1016/j.ygyno.2017.02.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becker-Hapak MK, Shrestha N, McClain E, Dee MJ, Chaturvedi P, Leclerc GM, Marsala LI, Foster M, Schappe T, Tran J, Desai S, Neal CC, Pence P, Wong P, Wagner JA, Russler-Germain D, Zhu X, Spanoudis CM, Gallo VL, et al. A fusion protein complex that combines il12, il15, and il18 signaling to induce memory-like nk cells for cancer immunotherapy. Cancer Immunology Research. 2021;1002(2020). https://doi.org/10.1158/2326-6066.Cir-20-1002.

  84. Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. Nanomedicine. 2021;31:102309. https://doi.org/10.1016/j.nano.2020.102309.

    Article  CAS  PubMed  Google Scholar 

  85. Kim KS, Kim DH, Kim DH. Recent advances to augment nk cell cancer immunotherapy using nanoparticles. Pharmaceutics. 2021;13(4). https://doi.org/10.3390/pharmaceutics13040525.

  86. Marchetti C, Palaia I, Giorgini M, De Medici C, Iadarola R, Vertechy L, Domenici L, Di Donato V, Tomao F, Muzii L, Benedetti Panici P. Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. Onco Targets Ther. 2014;7:1223–36. https://doi.org/10.2147/OTT.S40947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li X, McTaggart M, Malardier-Jugroot C. Synthesis and characterization of a ph responsive folic acid functionalized polymeric drug delivery system. Biophys Chem. 2016;214-215:17–26. https://doi.org/10.1016/j.bpc.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  88. Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS, Nguyen VQ, Thambi T, Suh YD, Park JH. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery. Int J Biol Macromol. 2018;110:399–405. https://doi.org/10.1016/j.ijbiomac.2017.11.048.

    Article  CAS  PubMed  Google Scholar 

  89. Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A, Yang P, Ruman J, Matei D. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: analysis of keynote-028. Gynecol Oncol. 2019;152(2):243–50. https://doi.org/10.1016/j.ygyno.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  90. Bösmüller HC, Wagner P, Pham DL, Fischer AK, Greif K, Beschorner C, Sipos B, Fend F, Staebler A. Cd56 (neural cell adhesion molecule) expression in ovarian carcinomas: association with high-grade and advanced stage but not with neuroendocrine differentiation. Int J Gynecol Cancer. 2017;27(2):239–45. https://doi.org/10.1097/igc.0000000000000888.

    Article  PubMed  Google Scholar 

  91. Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, Azim HA, Paralejas P, Grenier N, Hahn S-A, Ramsahai J, Seymour L. Dose-ranging and cohort-expansion study of monalizumab (iph2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): Ind221. Clinical Cancer Research. 2019;25(20):6052–60. https://doi.org/10.1158/1078-0432.Ccr-19-0298.

    Article  CAS  PubMed  Google Scholar 

  92. Andre P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, Blery M, Bonnafous C, Gauthier L, Morel A, Rossi B, Remark R, Breso V, Bonnet E, Habif G, Guia S, Lalanne AI, Hoffmann C, Lantz O, et al. Anti-nkg2a mab is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both t and nk cells. Cell. 2018;175(7):1731–1743.e13. https://doi.org/10.1016/j.cell.2018.10.014.

  93. Zaghi E, Calvi M, Marcenaro E, Mavilio D, Di Vito C. Targeting nkg2a to elucidate natural killer cell ontogenesis and to develop novel immune-therapeutic strategies in cancer therapy. Journal of Leukocyte Biology. 2019;105(6):1243–51. https://doi.org/10.1002/JLB.MR0718-300R.

    Article  CAS  PubMed  Google Scholar 

  94. Tinker AV, Hirte HW, Provencher D, Butler M, Ritter H, Tu D, Azim HA Jr, Paralejas P, Grenier N, Hahn SA, Ramsahai J, Seymour L. Dose-ranging and cohort-expansion study of monalizumab (iph2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): Ind221. Clin Cancer Res. 2019;25(20):6052–60. https://doi.org/10.1158/1078-0432.CCR-19-0298.

    Article  CAS  PubMed  Google Scholar 

  95. Portillo AL, Hogg R, Poznanski SM, Rojas EA, Cashell NJ, Hammill JA, Chew MV, Shenouda MM, Ritchie TM, Cao QT, Hirota JA, Dhesy-Thind S, Bramson JL, Ashkar AA. Expanded human nk cells armed with car uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience. 2021;24(6). https://doi.org/10.1016/j.isci.2021.102619.

  96. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, Cooper MA, Fehniger TA. Cytokine activation induces human memory-like nk cells. Blood. 2012;120(24):4751–60. https://doi.org/10.1182/blood-2012-04-419283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123. https://doi.org/10.1126/scitranslmed.aaf2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Garcia-Martinez E, Redondo A, Piulats JM, Rodriguez A, Casado A. Are antiangiogenics a good ‘partner’ for immunotherapy in ovarian cancer? Angiogenesis. 2020;23(4):543–57. https://doi.org/10.1007/s10456-020-09734-w.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Garcia A, Singh H. Bevacizumab and ovarian cancer. Ther Adv Med Oncol. 2013;5(2):133–41. https://doi.org/10.1177/1758834012467661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Designs that Cell for assistance with our figure. The Dalhousie University is located in Mi’kma’ki, the ancestral and unceded territory of the Mi’kmaq.

Funding

This research was supported by a Terry Fox Research Institute New Investigator award to JEB within the pan-Canadian Immunotherapeutic Network, and research funding from Ovarian Cancer Canada to JEB and BML. SN and MPT are trainees in the Cancer Research Training Program of the Beatrice Hunter Cancer Research Institute, with funds for MPT provided by the Bruce and Dorothy Rosetti Endowment through the Dalhousie Medical Research Foundation. MPT is supported by a Nova Scotia Graduate Scholarship. BioCanRx, a Canadian Network of Centres of Excellence, provided funding support for this research to APN. SN is supported by a Killam Scholarship, the President’s award from Dalhousie University and a CIHR Vanier Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette E. Boudreau.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Gynecologic Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugh-Toole, M., Nicolela, A.P., Nersesian, S. et al. Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma. Curr. Treat. Options in Oncol. 23, 210–226 (2022). https://doi.org/10.1007/s11864-021-00929-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-021-00929-x

Keywords

Navigation