Skip to main content
Log in

How Well Can We Control Dyslipidemias Through Lifestyle Modifications?

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The role for lifestyle modifications to correct dyslipidemia(s) is reviewed. Dietary composition is crucial. Replacing saturated fat with MUFA or n-6 PUFA lowers plasma low-density lipoproteins (LDL) cholesterol and ameliorates the LDL/HDL ratio. Replacing saturated fat with carbohydrates has diverging effects due to the heterogeneity of carbohydrate foods. Diets rich in refined carbohydrates increase fasting and postprandial triglycerides, whereas the consumption of fiber-rich, low GI foods lowers LDL cholesterol with no detrimental effects on triglycerides. The role of polyphenols is debated: available evidence suggests a lowering effect of polyphenol-rich foods on postprandial triglycerides. As for functional foods, health claims on a cholesterol lowering effect of psyllium, beta-glucans and phytosterols are accepted by regulatory agencies. The importance of alcohol intake, weight reduction, and physical activity is discussed. In conclusion, there is evidence that lifestyle affects plasma lipid. A multifactorial approach including multiple changes with additive effects is the best option. This may also ensure feasibility and durability. The traditional Mediterranean way of life can represent a useful model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.

    Article  CAS  PubMed  Google Scholar 

  2. Reiner Z, Catapano AL, De Backer G, et al. ESC committee for practice guidelines (CPG) 2008-2010 and 2010-2012 committees. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011;32:1769–818.

    Article  PubMed  Google Scholar 

  3. Eckel RH, Jakicic JM, Ard JD, et al. American college of cardiology/american heart association task force on practice guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 2014;129:S76–99.

    Article  PubMed  Google Scholar 

  4. Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk. J Am Coll Cardiol. 2009;53(4):316–22.

    Article  CAS  PubMed  Google Scholar 

  5. Mensink RP, Zock PL, Kester ADM, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.

    CAS  PubMed  Google Scholar 

  6. EFSA. Panel on dietetic products, nutrition and allergies (NDA): scientific opinion on the substantiation of health claims related to the replacement of mixtures of saturated fatty acids (SFAs) as present in foods or diets with mixtures of monounsaturated fatty acids (MUFAs) and/or mixtures of polyunsaturated fatty acids (PUFAs), and maintenance of normal blood LDL-cholesterol concentrations. EFSA J. 2011;9(4):2069.

    Article  Google Scholar 

  7. Vessby B, Uusitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia. 2001;44(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rasmussen BM, Vessby B, Uusitupa M, et al. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr. 2006;83:221–6.

    CAS  PubMed  Google Scholar 

  9. Griffin JD, Lichtenstein AH. Dietary cholesterol and plasma lipoprotein profiles: randomized-controlled trials. Curr Nutr Rep. 2013;2(4):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Augustin LS, Kendall CW, Jenkins DJ, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. This scientific consensus statement recognized the importance of postprandial glycemia in overall health, and the GI as a valid and reproducible method of classifying carbohydrate foods for this purpose.

  11. Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr. 2008;87(1):269S–74.

    CAS  PubMed  Google Scholar 

  12. Rivellese A, Riccardi G, Giacco A, et al. Reduction of risk factors for atherosclerosis in diabetic patients treated with a high-fiber diet. Prev Med. 1983;12(1):128–32.

    Article  CAS  PubMed  Google Scholar 

  13. Bazzano LA, Thompson AM, Tees MT, et al. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103.

    Article  CAS  PubMed  Google Scholar 

  14. Goff LM, Cowland DE, Hooper L, Frost GS. Low glycaemic index diets and blood lipids: a systematic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2013;23(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Bernstein AM, Titgemeier B, Kirkpatrick K, et al. Major cereal grain fibers and psyllium in relation to cardiovascular health. Nutrients. 2013;5:1471–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ha V, Sievenpiper JL, de Souza RJ, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):E252–62.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1413–21. This is a relevant meta-analysis of recently published randomized controlled trials (RCTs), comparing ≥3 g OBG/day with an appropriate control.

  18. Bansal S, Buring JE, Rifai N, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA. 2007;298(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  19. De Natale C, Annuzzi G, Bozzetto L, et al. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients. Diabetes Care. 2009;32(12):2168–73.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giacco R, Costabile G, Della Pepa G, et al. A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2014;24(8):837–44. In this study, the authors have shown that in people with the metabolic syndrome, a diet based on wholegrain cereals, as compared to a diet with refined cereals, is able to reduce postprandial triglyceride levels by as much as 40%, supporting the role played by cereal fiber in modulating postprandial metabolism.

  21. Kelly S, Frost G, Whittaker V, Summerbell C. Low glycaemic index diets for coronary heart disease. Cochrane Database Syst Rev. 2004;4, CD004467.

    PubMed  Google Scholar 

  22. Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem. 2007;18(4):217–27.

    Article  CAS  PubMed  Google Scholar 

  23. Bray GA. Fructose and risk of cardiometabolic disease. Curr Atheroscler Rep. 2012;14:570–8.

    Article  CAS  PubMed  Google Scholar 

  24. Lee AK, Binongo JN, Chowdhury R, et al. Consumption of less than 10% of total energy from added sugars is associated with increasing HDL in females during adolescence: a longitudinal analysis. J Am Heart Assoc. 2014;3(1), e000615.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119:1322–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiavaroli L, de Souza RJ, Ha V, et al. Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc. 2015;4(9):e001700. This is a systematic review and meta-analysis of controlled feeding trials showing that low-to-moderate doses of fructose (∼10% total energy) have no major impact on carbohydrate and lipid metabolism, while higher doses may induce adverse effects on fasting and postprandial triglyceride levels.

  27. Del Rio D, Rodriguez-Mateos A, Spencer JP, et al. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bladé C, Arola L, Salvadó MJ. Hypolipidemic effects of proanthocyanidins and their underlying biochemical and molecular mechanisms. Mol Nutr Food Res. 2010;54(1):37–59.

    Article  PubMed  Google Scholar 

  29. Jia L, Liu X, Bai YY, et al. Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2010;92:218–25.

    Article  CAS  PubMed  Google Scholar 

  30. Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51.

    Article  CAS  PubMed  Google Scholar 

  31. Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr. 2014;99(3):463–71. In this randomized controlled intervention study, the authors show that diets naturally rich in polyphenols positively influence fasting and postprandial triglycerides and reduce oxidative stress, without having any effect on LDL and HDL-cholesterol.

  32. Bozzetto L, Annuzzi G, Pacini G, et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial. Diabetologia. 2015;58(7):1551–60. This controlled intervention study shows that diets naturally rich in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk.

  33. Gylling H, Plat J, Turley S, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60.

    Article  CAS  PubMed  Google Scholar 

  34. AbuMweis SS, Jew S, Ames NP. Beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64:1472–80.

    Article  CAS  PubMed  Google Scholar 

  35. FDA, Final Rule: Food Labeling; Health Claims; Soluble Fiber from certain foods and risk of coronary heart disease (Psyllium husk) February 18, 1998.; Final rule: correction: Food Labeling: Health Claims; Soluble Fiber From Certain Foods and Coronary Heart Disease; Correction (Psyllium husk) April 9, 1998. http://www.fda.gov.

  36. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations (ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 on request from the European Commission. EFSA J. 2009;7(9):1254. 18 pp.

    Article  Google Scholar 

  37. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.

    CAS  PubMed  Google Scholar 

  38. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–92.

    Article  CAS  PubMed  Google Scholar 

  39. Brien SE, Ronksley PE, Turner BJ, et al. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;22:342–57.

    Google Scholar 

  40. Farvid MS, Ding M, Pan A, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014;130(18):1568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Hruby A, Bernstein AM, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol. 2015;66(14):1538–48.

    Article  CAS  PubMed  Google Scholar 

  42. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    Article  CAS  PubMed  Google Scholar 

  43. Rivellese AA, Maffettone A, Vessby B, et al. Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis. 2003;167:149–58.

    Article  CAS  PubMed  Google Scholar 

  44. Ramprasath VR, Jenkins DJ, Lamarche B, et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. Nutr J. 2014;13:101. In this study, a so-called “portfolio diet” that included plant sterols, viscous fiber, soy proteins, and nuts was tested, demonstrating the additive effects of lifestyle changes on the reduction of LDL cholesterol and CVD risk.

  45. Jousilahti P, Laatikainen T, Peltonen M, et al. Primary prevention and risk factor reduction in coronary heart disease mortality among working aged men and women in eastern Finland over 40 years: population based observational study. BMJ. 2016;352:i721.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Valsta LM, Tapanainen H, Sundvall J, et al. Explaining the 25-year decline of serum cholesterol by dietary changes and use of lipid-lowering medication in Finland. Public Health Nutr. 2010;13(6A):932–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Riccardi.

Ethics declarations

Conflict of Interest

Gabriele Riccardi, Olga Vaccaro, Giuseppina Costabile, and Angela A. Rivellese declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, G., Vaccaro, O., Costabile, G. et al. How Well Can We Control Dyslipidemias Through Lifestyle Modifications?. Curr Cardiol Rep 18, 66 (2016). https://doi.org/10.1007/s11886-016-0744-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0744-7

Keywords

Navigation