Skip to main content
Log in

Abstract

Advances in understanding the organization of the ocular motor system, including its anatomy and pharmacology, have provided new insights into the pathogenesis of various forms of nystagmus. The discoveries of fibromuscular pulleys that govern the pulling directions of the extraocular muscles has provided a new conceptual framework to account for the different axes of rotation of vestibular and other types of movements that may contribute to nystagmus. Theoretical and experimental evidence has suggested that acquired pendular nystagmus, which is commonly due to multiple sclerosis, arises from the neural network that normally guarantees steady gaze by integrating premotor signals. Pharmacologic inactivation studies have implicated both g-aminobutyric acid (GABA) and glutamate as important transmitters in the neural integrator and suggested new drug therapies. New electro-optic devices may eventually prove to be effective treatment for the visual symptoms cause by acquired nystagmus. The demonstration of proprioceptive mechanisms in the distal extraocular muscles has provided a rationale for new operative treatments for congenital nystagmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Leigh RJ, Zee DS: The Neurology of Eye Movements, edn 3. New York: Oxford University Press; 1999. Chapter 10 contains a comprehensive review of nystagmus, based on pathophysiology. Examples of most common forms of nystagmus are available as video clips on the CD version of this monograph.

    Google Scholar 

  2. Lorenz B, Gyurus P, Preising M, et al.: Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 2000, 41:2735–2742.

    PubMed  CAS  Google Scholar 

  3. Dell’Osso LF, Hogan D, Jacobs JB, et al.: Eye movements in canine hemichiasma: does human hemichiasma exist? Neuro-ophthalmology 1999, 22:47–58.

    Article  Google Scholar 

  4. Rambold H, Helmchen C, Buttner U: Unilateral muscimol inactivations of the interstitial nucleus of Cajal in the alert rhesus monkey do not elicit seesaw nystagmus. Neurosci Lett 1999, 272:75–78.

    Article  PubMed  CAS  Google Scholar 

  5. Cremer PD, Migliaccio AA, Pohl DV, et al.: Posterior semicircular canal nystagmus is conjugate and its axis is parallel to that of the canal. Neurology 2000, 54:2016–2020. Demonstration of how disorders affecting the posterior semicircular canal produce eye rotations in the plane of that canal, using the three-dimensional magnetic search coil technique.

    PubMed  CAS  Google Scholar 

  6. Demer JL, Oh SY, Poukens V: Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci 2000, 41:1280–1290. Paper that may be of revolutionary importance in the study of the control of eye movements. Demonstration that the inner global layer of extraocular muscles inserts into the sclera of the eye, but that the outer orbital layer inserts into fibromuscular pulleys that control the functional point of origin of each muscle. Implications for many different aspects of eye movements, including nystagmus.

    PubMed  CAS  Google Scholar 

  7. Büttner U, Helmchen C, Brandt T: Diagnostic criteria for central versus peripheral positioning nystagmus and vertigo: a review. Acta Otolaryngol 1999, 119:1–5.

    Article  PubMed  Google Scholar 

  8. Hamann KF, Schuster EM: Vibration-induced nystagmus. ORL J Otorhinolaryngol Relat Spec 1999, 61:74–79.

    PubMed  CAS  Google Scholar 

  9. Minor LB, Haslwanter T, Straumann D, Zee DS: Hyperventilation-induced nystagmus in patients with vestibular Schwannoma. Neurology 1999, 53:2158–2168. This paper establishes the clinical value of hyperventilation in the early diagnosis of vestibular nerve tumors.

    PubMed  CAS  Google Scholar 

  10. Honrubia V, Baloh RW, Harris MR, et al.: Paroxysmal positional vertigo syndrome. Am J Otol 1999, 20:465–470. Study of 292 patients with positional vertigo and nystagmus documenting the characteristics of involvement of each of the semicircular canals.

    PubMed  CAS  Google Scholar 

  11. Froehling DA, Bowen JM, Mohr DN, et al.: The canalith repositioning procedure for the treatment of benign paroxysmal positional vertigo: a randomized controlled trial. Mayo Clin Proc 2000, 75:695–700.

    Article  PubMed  CAS  Google Scholar 

  12. Blatt PJ, Georgakakis GA, Herdman SJ, et al.: The effect of the canalith repositioning maneuver on resolving postural instability in patients with benign paroxysmal positional vertigo. Am J Otol 2000, 21:356–363.

    Article  PubMed  CAS  Google Scholar 

  13. Yen MT, Herdman SJ, Tusa RJ: Oscillopsia and pseudonystagmus in kidney transplant patients. Am J Ophthalmol 1999, 128:768–770.

    Article  PubMed  CAS  Google Scholar 

  14. Kaseda Y, Kawakami H, Matsuyama Z, et al.: Spinocerebellar ataxia type 6 in relation to CAG repeat length. Acta Neurol Scand 1999, 99:209–212.

    PubMed  CAS  Google Scholar 

  15. Stahl JS, van Alphen AM, De Zeeuw CI: A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Meth 2000, 99:101–110. This study sets the stage for the systematic study of murine models of disorders, such as cerebellar degenerations and calcium channel disorders, which is bound to have broad implications for genetic disorders causing abnormal eye movements and ataxia.

    Article  CAS  Google Scholar 

  16. Fetter M, Haslwanter T, Bork M, Dichgans J: New insights into positional alcohol nystagmus using three-dimensional eye-movement analysis. Ann Neurol 1999, 45:216–223.

    Article  PubMed  CAS  Google Scholar 

  17. Mulder AH, Raemaekers JM, Boerman RH, Mattijssen V: Downbeat nystagmus caused by thiamine deficiency: an unusual presentation of CNS localization of large cell anaplastic CD 30-positive non-Hodgkin’s lymphoma. Ann Hematol 1999, 78:105–107.

    Article  PubMed  CAS  Google Scholar 

  18. Van Stavern GP, Biousse V, Newman NJ, Leingang JC: Downbeat nystagmus from heat stroke. J Neurol Neurosurg Psychiatry 2000, 69:403–404.

    Article  PubMed  Google Scholar 

  19. Arnold DB, Robinson DA: The oculomotor integrator: testing of a neural network model. Exp Brain Res 1997, 113:57–74.

    Article  PubMed  CAS  Google Scholar 

  20. Helmchen C, Rambold H, Fuhry L, Büttner U: Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey. Exp Brain Res 1998, 119:436–452.

    Article  PubMed  CAS  Google Scholar 

  21. Rambold H, Helmchen C, B:uttner U: Vestibular influence on the binocular control of vertical-torsional nystagmus after lesions in the interstitial nucleus of Cajal. Neuroreport 2000, 11:779–784.

    Article  PubMed  CAS  Google Scholar 

  22. De Zeeuw CI, Wylie DR, Stahl JS, Simpson JI: Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. J Neurophysiol 1995, 74:2051–2064.

    PubMed  Google Scholar 

  23. Stahl JS, Simpson JI: Dynamics of rabbit vestibular nucleus neurons and the influence of the flocculus. J Neurophysiol 1995, 73:1396–1413.

    PubMed  CAS  Google Scholar 

  24. Arnold DB, Robinson DA, Leigh RJ: Nystagmus induced by pharmacological inactivation of the brainstem ocular motor integrator in monkey. Vision Res 1999, 39:4286–4295. This study of effects of pharmacologic inactivation demonstrated the neurotransmitters that are important in the gaze-holding (neural integrator) mechanism, and has implications about selection of drug treatments for nystagmus.

    Article  PubMed  CAS  Google Scholar 

  25. Straube A, Kurzan R, Büttner U: Differential effects of bicuculline and muscimol microinjections into the vestibular nuclei on simian eye movements. Exp Brain Res 1991, 86:347–358.

    Article  PubMed  CAS  Google Scholar 

  26. Büttner-Ennever JA: Patterns of connectivity in the vestibular nuclei. Ann New York Acad Sci 1992, 656:363–378.

    Article  Google Scholar 

  27. Das VE, Oruganti P, Kramer PD, Leigh RJ: Experimental tests of a neural-network model for ocular oscillations caused by disease of central myelin. Exp Brain Res 2000, 133:189–197. First mathematical model for acquired pendular nystagmus in multiple sclerosis, which utilized the neural network approach pioneered by Arnold and Robinson [19]. The findings implicate an instability of the neural network that normally guarantees steady gaze (the neural integrator), and so suggests which drug therapies might prove effective in this condition.

    Article  PubMed  CAS  Google Scholar 

  28. Hertle RW, Dell’Osso LF: Clinical and ocular motor analysis of congenital nystagmus in infancy. J AAPOS 1999, 3:70–79. Systematic study of 43 infants documents that common clinical characteristics and eye-movement waveforms of congenital nystagmus begin in infancy.

    PubMed  CAS  Google Scholar 

  29. Hertle RW, Zhu X: Oculographic and clinical characterization of thirty-seven children with anomalous head postures, nystagmus, and strabismus: the basis of a clinical algorithm. J AAPOS 2000, 4:25–32.

    PubMed  CAS  Google Scholar 

  30. Ukwade MT, Bedell HE: Stereothresholds in persons with congenital nystagmus and in normal observers during comparable retinal image motion. Vision Res 1999, 39:2963–2973.

    Article  PubMed  CAS  Google Scholar 

  31. Okada T, Grunfeld E, Shallo-Hoffmann J, Bronstein AM: Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus. Brain 1999, 122:1293–1303.

    Article  PubMed  Google Scholar 

  32. Abadi RV, Whittle JP, Worfolk R: Oscillopsia and tolerance to retinal image movement in congenital nystagmus. Invest Ophthalmol Vis Sci 1999, 40:339–345.

    PubMed  CAS  Google Scholar 

  33. Brodsky MC, Fray KJ: The prevalence of strabismus in congenital nystagmus: the influence of anterior visual pathway disease. J AAPOS 1997, 1:16–19.

    PubMed  CAS  Google Scholar 

  34. Kerrison JB: New genetic, pathophysiologic, and therapeutic issues in nystagmus. Curr Opin Ophthalmol 1999, 10:411–419.

    Article  PubMed  CAS  Google Scholar 

  35. Kerrison JB, Vagefi MR, Barmada MM, Maumenee IH: Congenital motor nystagmus linked to Xq26-q27. Am J Hum Genetics 1999, 64:600–607.

    Article  CAS  Google Scholar 

  36. Cabot A, Rozet JM, Gerber S, et al.: A gene for X-linked idiopathic congenital nystagmus (NYS1) maps to chromosome Xp11.4-p11.3. Am J Hum Genet 1999, 64:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  37. Mellott ML, Brown J Jr, Fingert JH, et al.: Clinical characterization and linkage analysis of a family with congenital X-linked nystagmus and deuteranomaly Arch Ophthalmol 1999, 117:1630–1633.

    PubMed  CAS  Google Scholar 

  38. Averbuch-Heller L, Dell’Osso LF, Jacobs JB, Remler BF: Latent and congenital nystagmus in Down syndrome. J Neuroophthalmol 1999, 19:166–172.

    PubMed  CAS  Google Scholar 

  39. Guyton DL: Dissociated vertical deviation: etiology, mechanism, and associated phenomena. Costenbader Lecture J AAPOS 2000, 4:131–144.

    CAS  Google Scholar 

  40. Irving EL, Goltz HC, Steinbach MJ, Kraft SP: Vertical latent nystagmus component and vertical saccadic asymmetries in subjects with dissociated vertical deviation. J AAPOS 1998, 2:344–350.

    PubMed  CAS  Google Scholar 

  41. Stahl JS, Lehmkuhle M, Wu K, et al.: Prospects for treating acquired pendular nystagmus with servo-controlled optics. Invest Ophthalmol Vis Sci 2000, 41:1084–1090. Novel approach to treating the visual consequences of nystagmus combines electronic and optical methods. Further development and miniaturization may lead to a useful device that can been worn by patients with acquired nystagmus.

    PubMed  CAS  Google Scholar 

  42. Averbuch-Heller L, Tusa RJ, Fuhry L, et al.: A double-blind controlled study of gabapentin and baclofen as treatment for acquired nystagmus. Ann Neurol 1997, 41:818–825.

    Article  PubMed  CAS  Google Scholar 

  43. Starck M, Albrecht H, Straube A, Dieterich M: Drug therapy for acquired pendular nystagmus in multiple sclerosis. J Neurol 1997, 244:9–16.

    Article  PubMed  CAS  Google Scholar 

  44. Schon F, Hart PE, Hodgson TL, et al.: Suppression of pendular nystagmus by smoking cannabis in a patient with multiple sclerosis. Neurology 1999, 53:2209–2210.

    PubMed  CAS  Google Scholar 

  45. Dell’Osso LF: Suppression of pendular nystagmus by smoking cannabis in a patient with multiple sclerosis. Neurology 2000, 54:2190–2191.

    PubMed  CAS  Google Scholar 

  46. Gradstein L, Goldstein HP, Wizov SS, et al.: Relationships among visual acuity demands, convergence, and nystagmus in patients with manifest/latent nystagmus. J AAPOS 1998, 2:218–229.

    PubMed  CAS  Google Scholar 

  47. Barton JJ, Cox TA, Digre KB: Acquired convergence-evoked pendular nystagmus in multiple sclerosis. J Neuroophthalmol 1999, 19:34–38.

    PubMed  CAS  Google Scholar 

  48. Dell’Osso LF, Hertle RW, Williams RW, Jacobs JB: A new surgery for congenital nystagmus: effects of tenotomy on an achiasmatic canine and the role of extraocular proprioception. J AAPOS 1999, 3:166–182. A novel surgical approach, which proved an effective treatment for congenital nystagmus in dogs, is currently being evaluated in clinical trials in humans.

    Article  PubMed  CAS  Google Scholar 

  49. Ruskell GL: Extraocular muscle proprioceptors and proprioception. Prog Retinal Eye Res 1999, 18:269–291.

    Article  CAS  Google Scholar 

  50. Büttner-Ennever JA, Horn AK, Scherberger HJ, Henn V: The location of motoneurons innervating slow extraocular eye muscle fibers in monkey. Soc Neurosci Abstr 1999, 24:145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, J.S., Leigh, R.J. Nystagmus. Curr Neurol Neurosci Rep 1, 471–477 (2001). https://doi.org/10.1007/s11910-001-0109-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0109-4

Keywords

Navigation