Skip to main content

Advertisement

Log in

VEGF Inhibition, Hypertension, and Renal Toxicity

  • Palliative Medicine (A Jatoi, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The use of anti-angiogenic agents as part of the therapeutic armamentarium for advanced stage solid tumors has become the standard of care in several instances, particularly for renal cell carcinoma, non-small cell lung carcinoma, colorectal carcinoma, and gastrointestinal stromal tumors. These agents primarily target vascular endothelial growth factor (VEGF) and/or its receptors, and include bevacizumab, a humanized monoclonal antibody against VEGF, as well as tyrosine kinase inhibitors that target several receptor tyrosine kinases (RTK), including VEGF receptors. These therapies, as a general class of anti-angiogenic medications, have been shown to have common adverse vascular effects attributable directly or indirectly to their anti-VEGF effects, including hypertension, renal vascular injury, often manifested by proteinuria and thrombotic microangiopathy, and congestive heart failure. Knowledge of these common side effects and their underlying mechanisms may allow for more accurate and prompt diagnoses, timely clinical interventions, and the development of rational and standard treatments. These measures may minimize patient morbidity and mortality, not only by the treatment of side effects, but also by minimizing the disruption of treatment of the underlying malignancy, as well as improving patient quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  2. Eremina V, Quaggin SE. Biology of anti-angiogenic therapy-induced thrombotic microangiopathy. Semin Nephrol. 2010;30:582–90.

    Article  PubMed  CAS  Google Scholar 

  3. Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42:3127–39.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  5. • Kappers MH, van Esch JH, Sleijfer S, Danser AH, van den Meiracker AH. Cardiovascular and renal toxicity during angiogenesis inhibition: clinical and mechanistic aspects. J Hypertens. 2009;27:2297–309. Excellent overview of the vascular effects and toxicities of anti-VEGF agents.

    Article  PubMed  CAS  Google Scholar 

  6. Ebos JM, Bocci G, Man S, et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol Cancer Res. 2004;2:315–26.

    PubMed  CAS  Google Scholar 

  7. Kitamoto Y, Tokunaga H, Miyamoto K, Tomita K. VEGF is an essential molecule for glomerular structuring. Nephrol Dial Transplant. 2002;17 Suppl 9:25–7.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49:186–93.

    Article  PubMed  CAS  Google Scholar 

  9. Sane DC, Anton L, Brosnihan KB. Angiogenic growth factors and hypertension. Angiogenesis. 2004;7:193–201.

    Article  PubMed  CAS  Google Scholar 

  10. Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.

    Article  PubMed  CAS  Google Scholar 

  11. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  12. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. 2005;23:792–9.

    Article  PubMed  CAS  Google Scholar 

  13. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  PubMed  CAS  Google Scholar 

  14. Mourad JJ, Levy BI. Mechanisms of antiangiogenic-induced arterial hypertension. Curr Hypertens Rep. 2011;13:289–93.

    Article  PubMed  CAS  Google Scholar 

  15. Chen HX, Cleck JN. Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol. 2009;6:465–77.

    Article  PubMed  CAS  Google Scholar 

  16. Drevs J, Siegert P, Medinger M, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25:3045–54.

    Article  PubMed  CAS  Google Scholar 

  17. Sleijfer S, Ray-Coquard I, Papai Z, et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J Clin Oncol. 2009;27:3126–32.

    Article  PubMed  CAS  Google Scholar 

  18. Trotti A, Byhardt R, Stetz JA, et al. Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47:13–47.

    Article  PubMed  CAS  Google Scholar 

  19. Agabiti-Rosei E. Structural and functional changes of the microcirculation in hypertension: influence of pharmacological therapy. Drugs. 2003;63(Spec No 1):19–29.

    Article  PubMed  CAS  Google Scholar 

  20. Trotti A, Colevas AD, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176–81.

    Article  PubMed  Google Scholar 

  21. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52.

    Article  PubMed  CAS  Google Scholar 

  22. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117–23.

    Article  PubMed  CAS  Google Scholar 

  23. Feldman DR, Baum MS, Ginsberg MS, et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:1432–9.

    Article  PubMed  CAS  Google Scholar 

  24. Azad NS, Posadas EM, Kwitkowski VE, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol. 2008;26:3709–14.

    Article  PubMed  CAS  Google Scholar 

  25. Maitland ML, Bakris GL, Black HR, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102:596–604.

    Article  PubMed  CAS  Google Scholar 

  26. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol. 1998;274:H1054–8.

    PubMed  CAS  Google Scholar 

  27. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997;17:2793–800.

    Article  PubMed  CAS  Google Scholar 

  28. Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31:1171–7.

    Article  PubMed  CAS  Google Scholar 

  29. Gelinas DS, Bernatchez PN, Rollin S, Bazan NG, Sirois MG. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways. Br J Pharmacol. 2002;137:1021–30.

    Article  PubMed  CAS  Google Scholar 

  30. Li B, Ogasawara AK, Yang R, et al. KDR (VEGF receptor 2) is the major mediator for the hypotensive effect of VEGF. Hypertension. 2002;39:1095–100.

    Article  PubMed  CAS  Google Scholar 

  31. Henry TD, Annex BH, McKendall GR, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107:1359–65.

    Article  PubMed  CAS  Google Scholar 

  32. Zou AP, Cowley Jr AW. Role of nitric oxide in the control of renal function and salt sensitivity. Curr Hypertens Rep. 1999;1:178–86.

    Article  PubMed  CAS  Google Scholar 

  33. Mourad JJ, des Guetz G, Debbabi H, Levy BI. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008;19:927–34.

    Article  PubMed  Google Scholar 

  34. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? Hypertension. 2006;48:1012–7.

    Article  PubMed  CAS  Google Scholar 

  35. Kiefer FN, Misteli H, Kalak N, et al. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension. Blood Press. 2002;11:116–24.

    Article  PubMed  CAS  Google Scholar 

  36. Steeghs N, Gelderblom H, Roodt JO, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14:3470–6.

    Article  PubMed  CAS  Google Scholar 

  37. Veronese ML, Mosenkis A, Flaherty KT, et al. Mechanisms of hypertension associated with BAY 43–9006. J Clin Oncol. 2006;24:1363–9.

    Article  PubMed  CAS  Google Scholar 

  38. Mundel P, Kriz W. Cell culture of podocytes. Exp Nephrol. 1996;4:263–6.

    PubMed  CAS  Google Scholar 

  39. Nagata M, Yamaguchi Y, Ito K. Loss of mitotic activity and the expression of vimentin in glomerular epithelial cells of developing human kidneys. Anat Embryol (Berl). 1993;187:275–9.

    Article  CAS  Google Scholar 

  40. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol. 2000;11:1–8.

    PubMed  CAS  Google Scholar 

  41. Kestila M, Lenkkeri U, Mannikko M, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  PubMed  CAS  Google Scholar 

  42. Donoviel DB, Freed DD, Vogel H, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21:4829–36.

    Article  PubMed  CAS  Google Scholar 

  43. Schwarz K, Simons M, Reiser J, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest. 2001;108:1621–9.

    PubMed  CAS  Google Scholar 

  44. Shih NY, Li J, Karpitskii V, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  PubMed  CAS  Google Scholar 

  45. Barisoni L, Kriz W, Mundel P, D’Agati V. The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999;10:51–61.

    PubMed  CAS  Google Scholar 

  46. Garovic VD, Wagner SJ, Petrovic LM, et al. Glomerular expression of nephrin and synaptopodin, but not podocin, is decreased in kidney sections from women with preeclampsia. Nephrol Dial Transplant. 2007;22:1136–43.

    Article  PubMed  CAS  Google Scholar 

  47. Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358:1129–36.

    Article  PubMed  CAS  Google Scholar 

  48. Patel TV, Morgan JA, Demetri GD, et al. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst. 2008;100:282–4.

    Article  PubMed  CAS  Google Scholar 

  49. Eskens FAP, van Doorn A. An open label phase I dose escalation study of KRN951, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor 2 and 1 in a 4 week on, 2 week off schedule in patients with advanced solid tumors (Abstract). J Clin Oncol. 2006;24:2034.

    Google Scholar 

  50. Izzedine H, Massard C, Spano JP, et al. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer. 2010;46:439–48.

    Article  PubMed  CAS  Google Scholar 

  51. Nasr SH, Snyder RW, Bhagat G, Markowitz GS. Chronic lymphocytic leukemia and cryoglobulinemic glomerulonephritis. Kidney Int. 2007;71:93.

    Article  PubMed  CAS  Google Scholar 

  52. Khurana A. Allergic interstitial nephritis possibly related to sunitinib use. Am J Geriatr Pharmacother. 2007;5:341–4.

    Article  PubMed  CAS  Google Scholar 

  53. Izzedine H, Brocheriou I, Rixe O, Deray G. Interstitial nephritis in a patient taking sorafenib. Nephrol Dial Transplant. 2007;22:2411.

    Article  PubMed  Google Scholar 

  54. Stokes MB, Erazo MC, D’Agati VD. Glomerular disease related to anti-VEGF therapy. Kidney Int. 2008;74:1487–91.

    Article  PubMed  CAS  Google Scholar 

  55. Stylianou K, Lioudaki E, Papadimitraki E, et al. Crescentic glomerulonephritis associated with vascular endothelial growth factor (VEGF) inhibitor and bisphosphonate administration. Nephrol Dial Transplant. 2011;26:1742–5.

    Article  PubMed  CAS  Google Scholar 

  56. Costero O, Picazo ML, Zamora P, et al. Inhibition of tyrosine kinases by sunitinib associated with focal segmental glomerulosclerosis lesion in addition to thrombotic microangiopathy. Nephrol Dial Transplant. 2010;25:1001–3.

    Article  PubMed  CAS  Google Scholar 

  57. Bollee G, Patey N, Cazajous G, et al. Thrombotic microangiopathy secondary to VEGF pathway inhibition by sunitinib. Nephrol Dial Transplant. 2009;24:682–5.

    Article  PubMed  CAS  Google Scholar 

  58. Izzedine H, Brocheriou I, Deray G, Rixe O. Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial Transplant. 2007;22:1481–2.

    Article  PubMed  Google Scholar 

  59. Pelle G, Shweke N, Duong Van Huyen JP, et al. Systemic and kidney toxicity of intraocular administration of vascular endothelial growth factor inhibitors. Am J Kidney Dis. 2011;57:756–9.

    Article  PubMed  CAS  Google Scholar 

  60. Yu D, Petermann A, Kunter U, et al. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol. 2005;16:1733–41.

    Article  PubMed  CAS  Google Scholar 

  61. •• Müller-Deile J, Bröcker V, Grünwald V, et al. Renal side effects of VEGF-blocking therapy. NDT Plus. 2010;3:172–5. First article reporting the presence of podocyturia in patients with proteinuria treated with anti-VEGF therapy.

    Article  Google Scholar 

  62. Takahashi D, Nagahama K, Tsuura Y, Tanaka H, Tamura T. Sunitinib-induced nephrotic syndrome and irreversible renal dysfunction. Clin Exp Nephrol. 2011.

  63. •• Steeghs N, Rabelink TJ, op ‘t Roodt J, et al. Reversibility of capillary density after discontinuation of bevacizumab treatment. Ann Oncol. 2010;21:1100–5. First study showing that decreased capillary density as a result of bevacizumab is reversible and that capillary density may represent a marker of treatment efficacy.

    Article  PubMed  CAS  Google Scholar 

  64. Ravaud A, Sire M. Arterial hypertension and clinical benefit of sunitinib, sorafenib and bevacizumab in first and second-line treatment of metastatic renal cell cancer. Ann Oncol. 2009;20:966–7. author reply 7.

    Article  PubMed  CAS  Google Scholar 

  65. Rixe O, Billemont B, Izzedine H. Hypertension as a predictive factor of Sunitinib activity. Ann Oncol. 2007;18:1117.

    Article  PubMed  CAS  Google Scholar 

  66. Levy BI. Blood pressure as a potential biomarker of the efficacy angiogenesis inhibitor. Ann Oncol. 2009;20:200–3.

    Article  PubMed  CAS  Google Scholar 

  67. Bono P, Elfving H, Utriainen T, et al. Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol. 2009;20:393–4.

    Article  PubMed  CAS  Google Scholar 

  68. Mir O, Ropert S, Alexandre J, Goldwasser F. Hypertension as a surrogate marker for the activity of anti-VEGF agents. Ann Oncol. 2009;20:967–70.

    Article  PubMed  CAS  Google Scholar 

  69. • Osterlund P, Soveri LM, Isoniemi H, et al. Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer. 2011;104:599–604. Study that most clearly demonstrates an association between hypertension and overall survival in patients treated with bevacizumab.

    Article  PubMed  CAS  Google Scholar 

  70. Kim JJ, Vaziri SAJ, Rini BI, et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer. 2012:118(7):1946–54.

    Google Scholar 

  71. Garcia-Donas J, Esteban E, Leandro-Garcia LJ, et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 2011;12:1143–50.

    Article  PubMed  CAS  Google Scholar 

  72. Langenberg MH, van Herpen CM, De Bono J, et al. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of Cediranib in patients with advanced solid tumors. J Clin Oncol. 2009;27:6152–9.

    Article  PubMed  CAS  Google Scholar 

  73. Miura S, Fujino M, Matsuo Y, Tanigawa H, Saku K. Nifedipine-induced vascular endothelial growth factor secretion from coronary smooth muscle cells promotes endothelial tube formation via the kinase insert domain-containing receptor/fetal liver kinase-1/NO pathway. Hypertens Res. 2005;28:147–53.

    Article  PubMed  CAS  Google Scholar 

  74. Molteni A, Heffelfinger S, Moulder JE, Uhal B, Castellani WJ. Potential deployment of angiotensin I converting enzyme inhibitors and of angiotensin II type 1 and type 2 receptor blockers in cancer chemotherapy. Anticancer Agents Med Chem. 2006;6:451–60.

    Article  PubMed  CAS  Google Scholar 

  75. Izzedine H, Ederhy S, Goldwasser F, et al. Management of hypertension in angiogenesis inhibitor-treated patients. Ann Oncol. 2009;20:807–15.

    Article  PubMed  CAS  Google Scholar 

  76. Kelly DJ, Aaltonen P, Cox AJ, et al. Expression of the slit-diaphragm protein, nephrin, in experimental diabetic nephropathy: differing effects of anti-proteinuric therapies. Nephrol Dial Transplant. 2002;17:1327–32.

    Article  PubMed  CAS  Google Scholar 

  77. Dirix LY, Maes H, Sweldens C. Treatment of arterial hypertension (AHT) associated with angiogenesis inhibitors. Ann Oncol. 2007;18:1121–2.

    Article  PubMed  CAS  Google Scholar 

  78. Oliver JJ, Melville VP, Webb DJ. Effect of regular phosphodiesterase type 5 inhibition in hypertension. Hypertension. 2006;48:622–7.

    Article  PubMed  CAS  Google Scholar 

  79. Porta C, Paglino C, Imarisio I, Bonomi L. Uncovering Pandora’s vase: the growing problem of new toxicities from novel anticancer agents. The case of sorafenib and sunitinib. Clin Exp Med. 2007;7:127–34.

    Article  PubMed  CAS  Google Scholar 

  80. Launay-Vacher V, Ayllon J, Janus N, et al. Evolution of renal function in patients treated with antiangiogenics after nephrectomy for renal cell carcinoma. Urol Oncol. 2011;29:492–4.

    Article  PubMed  CAS  Google Scholar 

  81. Gupta S, Parsa V, Heilbrun LK, et al. Safety and efficacy of molecularly targeted agents in patients with metastatic kidney cancer with renal dysfunction. Anticancer Drugs. 2011;22:794–800.

    Article  PubMed  CAS  Google Scholar 

  82. Raina S, Honer M, Kramer SD, et al. Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am J Physiol Renal Physiol. 2011;301:F773–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna D. Garovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayman, S.R., Leung, N., Grande, J.P. et al. VEGF Inhibition, Hypertension, and Renal Toxicity. Curr Oncol Rep 14, 285–294 (2012). https://doi.org/10.1007/s11912-012-0242-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0242-z

Keywords

Navigation