Skip to main content

Advertisement

Log in

Dietary Approaches for Bone Health: Lessons from the Framingham Osteoporosis Study

  • Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis is characterized by systemic impairment of bone mass, strength, and microarchitecture, resulting in increased risk for fragility fracture, disability, loss of independence, and even death. Adequate nutrition is important in achieving and maintaining optimal bone mass, as well as preventing this debilitating disease. It is widely accepted that adequate calcium and vitamin D intake are necessary for good bone health; however, nutritional benefits to bone go beyond these two nutrients. This review article will provide updated information on all nutrients and foods now understood to alter bone health. Specifically, this paper will focus on related research from the Framingham Osteoporosis Study, an ancillary study of the Framingham Heart Study, with data on more than 5000 adult men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. What is Osteoporosis? National Osteoporosis Foundation http://nof.org/articles/7.

  2. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135(10):1114–26. discussion 1127–1136.

    CAS  PubMed  Google Scholar 

  3. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.

    CAS  PubMed  Google Scholar 

  4. Prynne CJ, Mishra GD, O’Connell MA, Muniz G, Laskey MA, Yan L, et al. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr. 2006;83(6):1420–8.

    CAS  PubMed  Google Scholar 

  5. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004;79(1):155–65.

    CAS  PubMed  Google Scholar 

  6. Hamidi M, Boucher BA, Cheung AM, Beyene J, Shah PS. Fruit and vegetable intake and bone health in women aged 45 years and over: a systematic review. Osteoporos Int. 2011;22(6):1681–93.

    Article  CAS  PubMed  Google Scholar 

  7. Byberg L, Bellavia A, Orsini N, Wolk A, Michaelsson K. Fruit and vegetable intake and risk of hip fracture: A cohort study of Swedish men and women. J Bone Miner Res 2014. This paper is of importance as many men and women were examined for their risk of fracture and a protective dose–response pattern was seen between fruit & vegetable intake with hip fracture .

  8. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–36.

    CAS  PubMed  Google Scholar 

  9. Tucker KL, Chen H, Hannan MT, Cupples LA, Wilson PW, Felson D, et al. Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2002;76(1):245–52.

    CAS  PubMed  Google Scholar 

  10. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest. 1990;85(3):632–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001;288(1):275–9.

    Article  CAS  PubMed  Google Scholar 

  12. Key Jr LL, Ries WL, Taylor RG, Hays BD, Pitzer BL. Oxygen derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction. Bone. 1990;11(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gabbay KH, Bohren KM, Morello R, Bertin T, Liu J, Vogel P. Ascorbate synthesis pathway: dual role of ascorbate in bone homeostasis. J Biol Chem. 2010;285(25):19510–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Peterkofsky B. Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr. 1991;54(6 Suppl):1135S–40.

    CAS  PubMed  Google Scholar 

  15. Simon JA, Hudes ES. Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol. 2001;154(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  16. Hall SL, Greendale GA. The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int. 1998;63(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  17. Morton DJ, Barrett-Connor EL, Schneider DL. Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res. 2001;16(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  18. Leveille SG, LaCroix AZ, Koepsell TD, Beresford SA, Van Belle G, Buchner DM. Dietary vitamin C and bone mineral density in postmenopausal women in Washington State. USA J Epidemiol Community Health. 1997;51(5):479–85.

    Article  CAS  Google Scholar 

  19. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003;88(4):1523–7.

    Article  CAS  PubMed  Google Scholar 

  20. Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S. Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res. 1999;14(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol. 2006;163(1):9–17.

    Article  PubMed  Google Scholar 

  22. Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, et al. High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr. 2008;138(10):1931–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, et al. Protective effect of total and supplemental vitamin C intake on the risk of hip fracture—a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int. 2009;20(11):1853–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ruiz-Ramos M, Vargas LA, Van der Goes TI F, Cervantes-Sandoval A, Mendoza-Nunez VM. Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging. 2010;14(6):467–72.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi M, Uchiyama S. beta-Cryptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol Cell Biochem. 2004;258(1–2):137–44.

    Article  CAS  PubMed  Google Scholar 

  26. Rao LG, Krishnadev N, Banasikowska K, Rao AV. Lycopene I—effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food. 2003;6(2):69–78.

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi M, Uchiyama S. Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: the unique anabolic effect of b-cryptoxanthin. Biol Pharm Bull. 2003;26(8):1188–91.

    Article  CAS  PubMed  Google Scholar 

  28. Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int. 2007;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  29. Uchiyama S, Sumida T, Yamaguchi M. Oral administration of beta-cryptoxanthin induces anabolic effects on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull. 2004;27(2):232–5.

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi M, Igarashi A, Uchiyama S, Morita S, Sugawara K, Sumida T. Prolonged intake of juice (Citrus Unshiu) reinforced with β-cryptoxanthin has an effect on circulating bone biochemical markers in normal individuals. J Home Sci. 2004;50(6):619–24.

    CAS  Google Scholar 

  31. Barker ME, McCloskey E, Saha S, Gossiel F, Charlesworth D, Powers HJ, et al. Serum retinoids and beta-carotene as predictors of hip and other fractures in elderly women. J Bone Miner Res. 2005;20(6):913–20.

    Article  CAS  PubMed  Google Scholar 

  32. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Inverse association of carotenoid intakes with 4-year change in bone mineral density in elderly men and women: the Framingham Osteoporosis Study. Am J Clin Nutr. 2009;89(1):416–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res. 2009;24(6):1086–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP. Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res. 2014;29(2):408–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22(4):1091–101.

    Article  CAS  PubMed  Google Scholar 

  36. Mackinnon ES, Rao AV, Rao LG. Dietary restriction of lycopene for a period of 1 month resulted in significantly increased biomarkers of oxidative stress and bone resorption in postmenopausal women. J Nutr Health Aging. 2011;15(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  37. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med. 2004;350(20):2042–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA, et al. Low Plasma Vitamin B(12) is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res. 2005;20(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  39. McLean RR, Jacques PF, Selhub J, Fredman L, Tucker KL, Samelson EJ, et al. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab. 2008;93(6):2206–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. van Wijngaarden JP, Doets EL, Szczecinska A, Souverein OW, Duffy ME, Dullemeijer C, et al. Vitamin B12, folate, homocysteine, and bone health in adults and elderly people: a systematic review with meta-analyses. J Nutr Metab. 2013;2013:486186.

    PubMed Central  PubMed  Google Scholar 

  41. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA. 2005;293(9):1082–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sawka AM, Ray JG, Yi Q, Josse RG, Lonn E. Randomized clinical trial of homocysteine level lowering therapy and fractures. Arch Intern Med. 2007;167(19):2136–9.

    Article  CAS  PubMed  Google Scholar 

  43. Gommans J, Yi Q, Eikelboom JW, Hankey GJ, Chen C, Rodgers H, et al. The effect of homocysteine-lowering with B-vitamins on osteoporotic fractures in patients with cerebrovascular disease: substudy of VITATOPS, a randomised placebo-controlled trial. BMC Geriatr. 2013;13:88.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. van Wijngaarden JP, Swart KM, Enneman AW, Dhonukshe-Rutten RA, van Dijk SC, Ham AC, et al. Effect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am J Clin Nutr. 2014;100(6):1578–86.

    Article  PubMed  CAS  Google Scholar 

  45. Binkley NC, Suttie JW. Vitamin K nutrition and osteoporosis. J Nutr. 1995;125(7):1812–21.

    CAS  PubMed  Google Scholar 

  46. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr. 2000;71(5):1201–8.

    CAS  PubMed  Google Scholar 

  47. Booth SL, Broe KE, Gagnon DR, Tucker KL, Hannan MT, McLean RR, et al. Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr. 2003;77(2):512–6.

    CAS  PubMed  Google Scholar 

  48. Booth SL, Broe KE, Peterson JW, Cheng DM, Dawson-Hughes B, Gundberg CM, et al. Associations between vitamin K biochemical measures and bone mineral density in men and women. J Clin Endocrinol Metab. 2004;89(10):4904–9.

    Article  CAS  PubMed  Google Scholar 

  49. McLean RR, Booth SL, Kiel DP, Broe KE, Gagnon DR, Tucker KL, et al. Association of dietary and biochemical measures of vitamin K with quantitative ultrasound of the heel in men and women. Osteoporos Int. 2006;17(4):600–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hamidi MS, Gajic-Veljanoski O, Cheung AM. Vitamin K and bone health. J Clin Densitom. 2013;16(4):409–13.

    Article  PubMed  Google Scholar 

  51. Shah K, Gleason L, Villareal DT. Vitamin K and bone health in older adults. J Nutr Gerontol Geriatr. 2014;33(1):10–22.

    Article  PubMed  Google Scholar 

  52. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166(12):1256–61.

    Article  CAS  PubMed  Google Scholar 

  53. Iwamoto J, Matsumoto H, Takeda T. Efficacy of menatetrenone (vitamin K2) against non-vertebral and hip fractures in patients with neurological diseases: meta-analysis of three randomized, controlled trials. Clin Drug Invest. 2009;29(7):471–9.

    Article  CAS  Google Scholar 

  54. Fang Y, Hu C, Tao X, Wan Y, Tao F. Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 2012;30(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  55. Huang ZB, Wan SL, Lu YJ, Ning L, Liu C, Fan SW. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int. 2015;26(3):1175–86.

    Article  CAS  PubMed  Google Scholar 

  56. Bushinsky DA. Acid–base imbalance and the skeleton. Eur J Nutr. 2001;40(5):238–44.

    Article  CAS  PubMed  Google Scholar 

  57. Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(1):207–17. This paper is of major importance as the RCT reports effects on BMD, bone microarchitecture as well as fracture outcomes.

    Article  CAS  PubMed  Google Scholar 

  58. Frassetto LA, Hardcastle AC, Sebastian A, Aucott L, Fraser WD, Reid DM, et al. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr. 2012;66(12):1315–22.

    Article  CAS  PubMed  Google Scholar 

  59. Macdonald HM, Black AJ, Aucott L, Duthie G, Duthie S, Sandison R, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008;88(2):465–74.

    CAS  PubMed  Google Scholar 

  60. McLean RR, Qiao N, Broe KE, Tucker KL, Casey V, Cupples LA, et al. Dietary acid load is not associated with lower bone mineral density except in older men. J Nutr. 2011;141(4):588–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lemann Jr J, Pleuss JA, Gray RW. Potassium causes calcium retention in healthy adults. J Nutr. 1993;123(9):1623–6.

    CAS  PubMed  Google Scholar 

  62. Kenney MA, McCoy H, Williams L. Effects of magnesium deficiency on strength, mass, and composition of rat femur. Calcif Tissue Int. 1994;54(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  63. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2011;93(5):1142–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Chen YM, Ho SC, Lam SS. Higher sea fish intake is associated with greater bone mass and lower osteoporosis risk in postmenopausal Chinese women. Osteoporos Int. 2010;21(6):939–46.

    Article  PubMed  Google Scholar 

  65. Zalloua PA, Hsu YH, Terwedow H, Zang T, Wu D, Tang G, et al. Impact of seafood and fruit consumption on bone mineral density. Maturitas. 2007;56(1):1–11.

    Article  PubMed  Google Scholar 

  66. Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT. Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep 2013. This paper is of major importance as it is an extensive review of the current knowledge and the gaps in knowledge for PUFA with bone and muscle.

  67. Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr 2011.

  68. Rousseau JH, Kleppinger A, Kenny AM. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc. 2009;57(10):1781–8.

    Article  PubMed  Google Scholar 

  69. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res. 2012;27(5):1222–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J Nutr. 2011;141(6):1146–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Dietary guidelines for Americans (2005). Dietary Guidelines Advisory Committee Report, 6th edn. U.S. Department of Health and Human Services and U.S. Department of Agriculture. In. Washington DC U.S. Government; 2005.

  72. Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77(1):257–65.

    CAS  PubMed  Google Scholar 

  73. Kull M, Kallikorm R, Lember M. Impact of molecularly defined hypolactasia, self-perceived milk intolerance and milk consumption on bone mineral density in a population sample in Northern Europe. Scand J Gastroenterol. 2009;44(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  74. McCabe LD, Martin BR, McCabe GP, Johnston CC, Weaver CM, Peacock M. Dairy intakes affect bone density in the elderly. Am J Clin Nutr. 2004;80(4):1066–74.

    CAS  PubMed  Google Scholar 

  75. Murphy S, Khaw KT, May H, Compston JE. Milk consumption and bone mineral density in middle aged and elderly women. BMJ. 1994;308(6934):939–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Teegarden D, Lyle RM, Proulx WR, Johnston CC, Weaver CM. Previous milk consumption is associated with greater bone density in young women. Am J Clin Nutr. 1999;69(5):1014–7.

    CAS  PubMed  Google Scholar 

  77. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, et al. Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies. J Bone Miner Res. 2011;26(4):833–9.

    Article  CAS  PubMed  Google Scholar 

  78. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr. 2003;77(2):504–11.

    CAS  PubMed  Google Scholar 

  79. Feskanich D, Bischoff-Ferrari HA, Frazier AL, Willett WC. Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr. 2014;168(1):54–60. This paper is of major importance as it is a pivotal examination of milk consumption during bone accumulation and the possible fracture sequela in older adults.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch Osteoporos. 2013;8(1–2):119.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Sahni S, Mangano KM, Tucker KL, Kiel DP, Casey VA, Hannan MT. Protective association of milk intake on the risk of hip fracture: results from the Framingham Original Cohort. J Bone Miner Res. 2014;29(8):1756–62. This paper is of major importance as it examines a population-based cohort and finds milk as consumed as an older adult to be protective against subsequent fracture.

    Article  CAS  PubMed  Google Scholar 

  82. Heaney RP, Layman DK. Amount and type of protein influences bone health. Am J Clin Nutr. 2008;87(5):1567S–70.

    CAS  PubMed  Google Scholar 

  83. Itoh R, Nishiyama N, Suyama Y. Dietary protein intake and urinary excretion of calcium: a cross-sectional study in a healthy Japanese population. Am J Clin Nutr. 1998;67(3):438–44.

    CAS  PubMed  Google Scholar 

  84. Johnson NE, Alcantara EN, Linkswiler H. Effect of level of protein intake on urinary and fecal calcium and calcium retention of young adult males. J Nutr. 1970;100(12):1425–30.

    CAS  PubMed  Google Scholar 

  85. Kerstetter JE, Allen LH. Dietary protein increases urinary calcium. J Nutr. 1990;120(1):134–6.

    CAS  PubMed  Google Scholar 

  86. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15(12):2504–12.

    Article  CAS  PubMed  Google Scholar 

  87. Munger RG, Cerhan JR, Chiu BC. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr. 1999;69(1):147–52.

    CAS  PubMed  Google Scholar 

  88. Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E. Protein consumption and bone mineral density in the elderly: the Rancho Bernardo Study. Am J Epidemiol. 2002;155(7):636–44.

    Article  PubMed  Google Scholar 

  89. Cooper C, Atkinson EJ, Hensrud DD, Wahner HW, O’Fallon WM, Riggs BL, et al. Dietary protein intake and bone mass in women. Calcif Tissue Int. 1996;58(5):320–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kerstetter JE, Looker AC, Insogna KL. Low dietary protein and low bone density. Calcif Tissue Int. 2000;66(4):313.

    Article  CAS  PubMed  Google Scholar 

  91. Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr. 1986;44(6):863–76.

    CAS  PubMed  Google Scholar 

  92. Geinoz G, Rapin CH, Rizzoli R, Kraemer R, Buchs B, Slosman D, et al. Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int. 1993;3(5):242–8.

    Article  CAS  PubMed  Google Scholar 

  93. Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills [see comments]. Am J Clin Nutr. 1991;53(1):132–42.

    CAS  PubMed  Google Scholar 

  94. Metz JA, Anderson JJ, Gallagher Jr PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women [see comments]. Am J Clin Nutr. 1993;58(4):537–42.

    CAS  PubMed  Google Scholar 

  95. Nieves JW. Osteoporosis: the role of micronutrients. Am J Clin Nutr. 2005;81(5):1232S–9.

    CAS  PubMed  Google Scholar 

  96. Henderson NK, Price RI, Cole JH, Gutteridge DH, Bhagat CI. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. J Bone Miner Res. 1995;10(3):384–93.

    Article  CAS  PubMed  Google Scholar 

  97. Wang MC, Luz Villa M, Marcus R, Kelsey JL. Associations of vitamin C, calcium and protein with bone mass in postmenopausal Mexican American women. Osteoporos Int. 1997;7(6):533–8.

    Article  CAS  PubMed  Google Scholar 

  98. Misra D, Berry SD, Broe KE, McLean RR, Cupples LA, Tucker KL, et al. Does dietary protein reduce hip fracture risk in elders? The Framingham Osteoporosis Study. Osteoporos Int. 2011;22(1):345–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Sahni S, Broe KE, Tucker KL, McLean RR, Kiel DP, Cupples LA, et al. Association of total protein intake with bone mineral density and bone loss in men and women from the Framingham Offspring Study. Public Health Nutr. 2014;17(11):2570–6.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Sahni S, Cupples LA, McLean RR, Tucker KL, Broe KE, Kiel DP, et al. Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res. 2010;25(12):2770–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Carlisle EM. Silicon an essential element for the chick. Science. 1972;178:619–21.

    Article  CAS  PubMed  Google Scholar 

  102. Carlisle EM. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int. 1981;33(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  103. Carlisle EM. Silicon. In: O’Dell BL, Sunde RA, editors. Handbook of nutritionally essential mineral elements. New York: Marcel Dekker, Inc; 1997. p. 603–18.

    Google Scholar 

  104. Jugdaohsingh R, Reffitt DM, Oldham C, Day JP, Fifield LK, Thompson RPH, et al. Oligomeric but not monomeric silica prevents aluminum absorption in humans. Am J Clin Nutr. 2000;71:944–9.

    CAS  PubMed  Google Scholar 

  105. Sripanyakorn S, Jugdaohsingh R, Elliott H, Walker C, Mehta P, Shoukru S, et al. The silicon content of beer and its bioavailability in healthy volunteers. Br J Nutr. 2004;91(3):403–9.

    Article  CAS  PubMed  Google Scholar 

  106. Spector TD, Calomme MR, Anderson SH, Clement G, Bevan L, Demeester N, et al. Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskelet Disord. 2008;9:85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Tucker KL, Jugdaohsingh R, Powell JJ, Qiao N, Hannan MT, Sripanyakorn S, et al. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am J Clin Nutr. 2009;89(4):1188–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    Article  CAS  PubMed  Google Scholar 

  109. Zhou H, Shang L, Li X, Zhang X, Gao G, Guo C, et al. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res. 2009;315(17):2953–62.

    Article  CAS  PubMed  Google Scholar 

  110. Shakibaei M, Buhrmann C, Mobasheri A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem. 2011;286(13):11492–505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Zhao H, Li X, Li N, Liu T, Liu J, Li Z, et al. Long-term resveratrol treatment prevents ovariectomy-induced osteopenia in rats without hyperplastic effects on the uterus. Br J Nutr. 2014;111(5):836–46.

    Article  CAS  PubMed  Google Scholar 

  112. Ornstrup MJ, Harslof T, Kjaer TN, Langdahl BL, Pedersen SB. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J Clin Endocrinol Metab. 2014;99(12):4720–9. This paper is of major importance as one of the first studies to examine resveratrol with BMD and bone marker in a RCT.

    Article  CAS  PubMed  Google Scholar 

  113. Sahni S, Kiel DP. Smoking, alcohol, and bone health. In: Holick MF, Nieves JW, editors. Nutrition and Bone Health. 2nd edn. New York © Springer New York; 2015, XXXIX, 30: 489–504.

  114. Jacobs Jr DR, Gross MD, Tapsell LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009;89(5):1543S–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  116. Mangano KM SS, Kiel DP, Tucker KL, Hannan MT. Individual protein food sources are associated with greater bone mineral density among men and women from the Framingham Offspring Study. American Society of Nutrition, Experimental Biology Annual Meeting, San Diego, CA 2014.

  117. Karamati M, Jessri M, Shariati-Bafghi SE, Rashidkhani B. Dietary patterns in relation to bone mineral density among menopausal Iranian women. Calcif Tissue Int. 2012;91(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  118. Hardcastle AC, Aucott L, Fraser WD, Reid DM, Macdonald HM. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur J Clin Nutr. 2011;65(3):378–85.

    Article  CAS  PubMed  Google Scholar 

  119. Okubo H, Sasaki S, Horiguchi H, Oguma E, Miyamoto K, Hosoi Y, et al. Dietary patterns associated with bone mineral density in premenopausal Japanese farmwomen. Am J Clin Nutr. 2006;83(5):1185–92.

    CAS  PubMed  Google Scholar 

  120. Kiel DP, Myers RH, Cupples LA, Kong XF, Zhu XH, Ordovas J, et al. The BsmI vitamin D receptor restriction fragment length polymorphism (bb) influences the effect of calcium intake on bone mineral density. J Bone Miner Res. 1997;12(7):1049–57.

    Article  CAS  PubMed  Google Scholar 

  121. Karasik D, Myers RH, Hannan MT, Gagnon D, McLean RR, Cupples LA, et al. Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporos Int. 2002;13(10):796–802.

    Article  CAS  PubMed  Google Scholar 

  122. Ackert-Bicknell CL, Demissie S, Marin de Evsikova C, Hsu YH, DeMambro VE, Karasik D, et al. PPARG by dietary fat interaction influences bone mass in mice and humans. J Bone Miner Res. 2008;23(9):1398–408.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

DP Kiel received grant (R01 AR 41398) from National Institute for Arthritis Musculoskeletal and Skin Diseases, during the conduct of the study.

Compliance with Ethics Guidelines

Conflict of Interest

S Sahni has received research grants from General Mills Bell Institute of Health and Nutrition. KM Mangano declares no conflicts of interest. RR McLean has received research grants from General Mills Bell Institute of Health and Nutrition. MT Hannan has received research grants from General Mills Bell Institute of Health and Nutrition. DP Kiel declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by S Sahni, KM Mangano, RR McLean, MT Hannan, and DP Kiel involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Sahni.

Additional information

This article is part of the Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahni, S., Mangano, K.M., McLean, R.R. et al. Dietary Approaches for Bone Health: Lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 13, 245–255 (2015). https://doi.org/10.1007/s11914-015-0272-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0272-1

Keywords

Navigation