Skip to main content
Log in

Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

A considerable volume of evidence has accumulated to suggest that whole-body vibration (WBV) may have a therapeutic role to play in the prevention of osteoporotic fracture, particularly for individuals who are unable to tolerate vigorous exercise interventions. There is moderate to strong evidence that WBV will prevent falls (likely due to enhanced neuromuscular function), but also some indication that the effects of WBV do not outstrip those of targeted exercise. Animal data indicates that WBV will also improve bone mass, including preventing loss due to hormone withdrawal, disuse and glucocorticoid exposure. Human trials, however, have produced equivocal outcomes for bone. Positive trends are apparent at the hip and spine, but shortcomings in study designs have limited statistical power. The mechanism of the vibration effect on bone tissue is likely to be mechanical coupling between an oscillating cell nucleus and the cytoskeleton. More robust dose-response human data are required before therapeutic guidelines can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance • • Of major importance

  1. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341(8837):72–5.

    Article  CAS  PubMed  Google Scholar 

  2. Kreisfeld R, Newson R. Hip fracture injuries. Adelaide: Australian Institute of Health and Welfare, National Injury Surveillance Unit2006 November Contract No.: 8.

  3. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. [published erratum appears in Lancet 1996 Aug 10;348(9024):416]. Lancet. 1996;348(9021):145–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wolfson L, Judge J, Whipple R, King M. Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:64–7.

  5. Reginster JY. Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs. 2011;71(1):65–78.

    Article  CAS  PubMed  Google Scholar 

  6. Compston JE, Seeman E. Compliance with osteoporosis therapy is the weakest link. Lancet. 2006;368(9540):973–4.

    Article  PubMed  Google Scholar 

  7. Eisman J, Clapham S, Kehoe L. Osteoporosis prevalence and levels of treatment in primary care: the Australian BoneCare Study. J Bone Miner Res. 2004;19(12):1969–75.

    Article  PubMed  Google Scholar 

  8. Rabenda V, Vanoverloop J, Fabri V, Mertens R, Sumkay F, Vannecke C, et al. Low incidence of anti-osteoporosis treatment after hip fracture. J Bone Joint Surg Am. 2008;90(10):2142–8.

    Article  PubMed  Google Scholar 

  9. Cooper C, Jakob F, Chinn C, Martin-Mola E, Fardellone P, Adami S, et al. Fracture incidence and changes in quality of life in women with an inadequate clinical outcome from osteoporosis therapy: the Observational Study of Severe Osteoporosis (OSSO). Osteoporos Int. 2008;19(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen ND, Eisman JA, Nguyen TV. Anti-hip fracture efficacy of biophosphonates: a Bayesian analysis of clinical trials. J Bone Miner Res. 2006;21(2):340–9.

    Article  CAS  PubMed  Google Scholar 

  11. Morin S, Rahme E, Behlouli H, Tenenhouse A, Goltzman D, Pilote L. Effectiveness of antiresorptive agents in the prevention of recurrent hip fractures. Osteoporos Int. 2007;18(12):1625–32.

    Article  CAS  PubMed  Google Scholar 

  12. Bemben D, Langdon D. Relationship between estrogen use and musculoskeletal function in postmenopausal women. Maturitas. 2002;2:119–27.

    Article  Google Scholar 

  13. Pel JJ, Bagheri J, van Dam LM, van den Berg-Emons HJ, Horemans HL, Stam HJ, et al. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Med Eng Phys. 2009;31(8):937–44.

    Article  CAS  PubMed  Google Scholar 

  14. Rubin C, Pope M, Fritton JC, Magnusson M, Hansson T, McLeod K. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine. 2003;28(23):2621–7.

    Article  PubMed  Google Scholar 

  15. Kiiski J, Heinonen A, Jarvinen TL, Kannus P, Sievanen H. Transmission of vertical whole body vibration to the human body. J Bone Miner Res. 2008;23(8):1318–25.

    Article  PubMed  Google Scholar 

  16. Matsumoto Y, Griffin M. Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude. J Sound Vib. 1998;212(1):85–107.

    Article  Google Scholar 

  17. Crewther B, Cronin J, Keogh J. Gravitational forces and whole body vibration: implications for prescription of vibratory stimulation. Phys Ther Sport. 2004;5(1):37–43.

    Article  Google Scholar 

  18. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone. 2006;39(5):1059–66.

    Article  PubMed  Google Scholar 

  19. Xie L, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J Appl Physiol. 2008;104(4):1056–62.

    Article  PubMed  Google Scholar 

  20. Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G. Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int. 1998;63(6):510–4.

    Article  CAS  PubMed  Google Scholar 

  21. Chen GX, Zheng S, Qin S, Zhong ZM, Wu XH, Huang ZP, et al. Effect of low-magnitude whole-body vibration combined with alendronate in ovariectomized rats: a random controlled osteoporosis prevention study. PLoS ONE. 2014;9(5), e96181.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, et al. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int. 2015;26(1):303–13.

    Article  CAS  PubMed  Google Scholar 

  23. Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 2001;15(12):2225–9.

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira ML, Bergamaschi CT, Silva OL, Nonaka KO, Wang CC, Carvalho AB, et al. Mechanical vibration preserves bone structure in rats treated with glucocorticoids. Bone. 2010;46(6):1516–21.

    Article  PubMed  Google Scholar 

  25. Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J Cell Biochem. 2009;106(2):306–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res. 2009;24(1):50–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603–4.

    Article  CAS  PubMed  Google Scholar 

  28. Judex S, Boyd S, Qin YX, Turner S, Ye K, Muller R, et al. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng. 2003;31(1):12–20.

    Article  PubMed  Google Scholar 

  29. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51.

    Article  PubMed  Google Scholar 

  30. Kiel DP, Hannan MT, Barton BA, Bouxsein ML, Sisson E, Lang T, et al. Low-magnitude mechanical stimulation to improve bone density in persons of advanced age: a randomized. Placebo Control Trial J Bone Miner Res. 2015;30(7):1319–28.

    Article  CAS  Google Scholar 

  31. Slatkovska L, Alibhai SM, Beyene J, Hu H, Demaras A, Cheung AM. Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med. 2011;155(10):668–79. W205.

    Article  PubMed  Google Scholar 

  32. Slatkovska L, Beyene J, Alibhai SM, Wong Q, Sohail QZ, Cheung AM. Effect of whole-body vibration on calcaneal quantitative ultrasound measurements in postmenopausal women: a randomized controlled trial. Calcif Tissue Int. 2014;95(6):547–56.

    Article  CAS  PubMed  Google Scholar 

  33. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464–74.

    Article  PubMed  Google Scholar 

  34. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360–9.

    Article  PubMed  Google Scholar 

  35. Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res. 2003;18(5):876–84.

    Article  PubMed  Google Scholar 

  36. Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7:92.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ruan XY, Jin FY, Liu YL, Peng ZL, Sun YG. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin Med J (Engl). 2008;121(13):1155–8.

    Google Scholar 

  38. Lai CL, Tseng SY, Chen CN, Liao WC, Wang CH, Lee MC, et al. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin Interv Aging. 2013;8:1603–9.

    PubMed Central  PubMed  Google Scholar 

  39. Liphardt AM, Schipilow J, Hanley DA, Boyd SK. Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training. Osteoporos Int. 2015;26(3):911–20.

    Article  CAS  PubMed  Google Scholar 

  40. Cardinale M, Leiper J, Farajian P, Heer M. Whole-body vibration can reduce calciuria induced by high protein intakes and may counteract bone resorption: a preliminary study. J Sport Sci. 2007;25(1):111–9.

    Article  CAS  Google Scholar 

  41. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–9.

    Article  PubMed  Google Scholar 

  42. Beck BR, Norling TL. The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil. 2010;89(12):997–1009.

    Article  PubMed  Google Scholar 

  43. Merriman H, Jackson K. The effects of whole-body vibration training in aging adults: a systematic review. J Geriatr Phys Ther. 2009;32(3):134–45.

    Article  PubMed  Google Scholar 

  44. Slatkovska L, Alibhai SM, Beyene J, Cheung AM. Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int. 2010;21(12):1969–80.

    Article  CAS  PubMed  Google Scholar 

  45. Mikhael M, Orr R, Fiatarone Singh MA. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: a systematic review of the literature. Maturitas. 2010;66(2):150–7.

    Article  PubMed  Google Scholar 

  46. Lau RWK, Liao LR, Yu FL, Teo T, Chung RCK, Pang MYC. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil. 2011;25(11):975–88.

    Article  PubMed  Google Scholar 

  47. Latham N, Anderson C, Bennett D, Stretton C. Progressive resistance strength training for physical disability in older people. Cochrane Database Syst Rev. 2003;2, CD002759.

    PubMed  Google Scholar 

  48. Necking LE, Lundstrom R, Lundborg G, Thornell LE, Friden J. Skeletal muscle changes after short term vibration. Scand J Plast Reconstr Surg Hand Surg. 1996;30(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  49. Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. J Strength Cond Res. 2006;20(1):124–9.

    PubMed  Google Scholar 

  50. Torvinen S, Kannu P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, et al. Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin Physiol Funct Imaging. 2002;22(2):145–52.

    Article  PubMed  Google Scholar 

  51. Rehn B, Lidstrom J, Skoglund J, Lindstrom B. Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scand J Med Sci Sports. 2007;17(1):2–11.

    CAS  PubMed  Google Scholar 

  52. Roelants M, Delecluse C, Goris M, Verschueren S. Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med. 2004;25(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  53. Roelants M, Delecluse C, Verschueren SM. Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc. 2004;52(6):901–8.

    Article  PubMed  Google Scholar 

  54. Verschueren S, Roelents M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res. 2004;19(3):352–9.

    Article  PubMed  Google Scholar 

  55. Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):1033–41.

    Article  PubMed  Google Scholar 

  56. Bautmans I, Van Hees E, Lemper JC, Mets T. The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial [ISRCTN62535013]. BMC Geriatr. 2005;5:17.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hawkey A, Griffiths K, Babraj J, Cobley JN. Whole body vibration training and its application to age-related performance decrements: an exploratory analysis. J Strength Cond Res. 2015 Jul 31.

  58. Stengel SV, Kemmler W, Kalender WA, Engelke K. Effects of whole body vibration on bone mineral density and falls: results of the randomised controlled ELVIS study with postmenopausal women. Osteoporos Int. 2010 March 2010.

  59. Furness TP, Maschette WE. Influence of whole body vibration platform frequency on neuromuscular performance of community-dwelling older adults. J Strength Cond Res. 2009;23(5):1508–13.

    Article  PubMed  Google Scholar 

  60. Di Giminiani R, Tihanyi J, Safar S, Scrimaglio R. The effects of vibration on explosive and reactive strength when applying individualized vibration frequencies. J Sports Sci. 2009;27(2):169–77.

    Article  PubMed  Google Scholar 

  61. Burke D, Hagbarth KE, Lofstedt L, Wallin B. The response of human muscle spindle endings to vibration during isometric contraction. J Physiol. 1976;261:695–711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Matthews PB, Watson JD. Action of vibration on the response of cat muscle spindle Ia afferents to low frequency sinusoidal stretching. J Physiol. 1981;317:365–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kawanabe K, Kawashima A, Sashimoto I, Takeda T, Sato Y, Iwamoto J. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. Keio J Med. 2007;56(1):28–33.

    Article  PubMed  Google Scholar 

  64. Cheung WH, Mok HW, Qin L, Sze PC, Lee KM, Leung KS. High-frequency whole-body vibration improves balancing ability in elderly women. Arch Phys Med Rehabil. 2007;88(7):852–7.

    Article  PubMed  Google Scholar 

  65. Bruyere O, Wuidart MA, Di Palma E, Gourlay M, Ethgen O, Richy F, et al. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil. 2005;86(2):303–7.

    Article  PubMed  Google Scholar 

  66. Yang F, King GA, Dillon L, Su X. Controlled whole-body vibration training reduces risk of falls among community-dwelling older adults. J Biomech. 2015 Jul 6.

  67. Bogaerts A, Delecluse C, Claessens AL, Coudyzer W, Boonen S, Verschueren SM. Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2007;62(6):630–5.

    Article  PubMed  Google Scholar 

  68. Sitja-Rabert M, Martinez-Zapata MJ, Fort Vanmeerhaeghe A, Rey Abella F, Romero-Rodriguez D, Bonfill X. Effects of a whole body vibration (WBV) exercise intervention for institutionalized older people: a randomized, multicentre, parallel, clinical trial. J Am Med Dir Assoc. 2015;16(2):125–31.

    Article  PubMed  Google Scholar 

  69. Leung KS, Li CY, Tse YK, Choy TK, Leung PC, Hung VW, et al. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly—a cluster-randomized controlled trial. Osteoporos Int. 2014;25(6):1785–95. This large, cluster-randomised controlled trial examined the efficacy of 18 months of 20 min 0.3 g WBV, 5 days/week at 35 Hz, in 710 elderly men and women on fall rates and fracture risks and reported significantly fewer fall or fracture incidences in the treatment group.

    Article  CAS  PubMed  Google Scholar 

  70. Pollock RD, Martin CF, Newham DJ. The effect of whole body vibration on older people: a systemic review. PHYSICAL Therapy Reviews. 2012;17(2).

  71. Sitja-Rabert M, Rigau D, Fort Vanmeerghaeghe A, Romero-Rodriguez D, Bonastre Subirana M, Bonfill X. Efficacy of whole body vibration exercise in older people: a systematic review. Disabil Rehabil. 2012;34(11):883–93.

    Article  PubMed  Google Scholar 

  72. Lam FMH, Lau RWK, Chung RCK, Pang MYC. The effect of whole body vibration on balance, mobility and falls in older adults: a systematic review and meta-analysis. Maturitas. 2012;72(3):206–13.

    Article  PubMed  Google Scholar 

  73. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57(5):344–58.

    Article  CAS  PubMed  Google Scholar 

  74. Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop. 1994;298:165–74.

    PubMed  Google Scholar 

  75. Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol. 1995;269(3 Pt 1):E438–42.

    CAS  PubMed  Google Scholar 

  76. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397–402.

    CAS  PubMed  Google Scholar 

  77. Uzer G, Manske SL, Chan ME, Chiang FP, Rubin CT, Frame MD, et al. Separating fluid shear stress from acceleration during vibrations in vitro: identification of mechanical signals modulating the cellular response. Cell Mol Bioeng. 2012;5(3):266–76.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Judex S, Rubin CT. Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact. 2010;10(1):3–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Judex S, Koh TJ, Xie L. Modulation of bone’s sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporos Int. 2015;26(4):1417–28. This useful study examined acceleration magnitude and the number and duration of daily loading bouts in order to determine which of them modulated vibration efficacy. At a single frequency of 45 Hz, 1, 2 or 4 daily bouts were applied for 15, 30, or 60 min. All vibration combinations except 15 min/d at 0.3 g improved bone formation rates and 30 and 60 min bouts were more effective across the board than 15 min. Increasing the number of daily bouts or dividing the single daily bout into shorter bouts did not improve efficacy.

    Article  CAS  PubMed  Google Scholar 

  80. Garman R, Gaudette G, Donahue LR, Rubin C, Judex S. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res. 2007;25(6):732–40.

    Article  PubMed  Google Scholar 

  81. Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS ONE. 2007;2(7), e653.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Dickerson DA, Sander EA, Nauman EA. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech Model Mechan. 2008;7(3):191–202.

    Article  CAS  Google Scholar 

  83. Uzer G, Pongkitwitoon S, Ian C, Thompson WR, Rubin J, Chan ME, et al. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS ONE. 2014;9(3), e90840. This interesting paper advances what is known about the mechanism of action of WBV on bone, showing that mesenchymal stem cell response to vibration occurs via mechanical coupling between the nucleus and the cytoskeleton.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, et al. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells. 2015;33(6):2063–76.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Lau E, Al-Dujaili S, Guenther A, Liu DW, Wang LY, You LD. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010;46(6):1508–15.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Zimmerman SI, Girman CJ, Buie VC, Chandler J, Hawkes W, Martin A, et al. The prevalence of osteoporosis in nursing home residents. Osteoporos Int. 1999;9(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  87. Chandler JM, Duncan PW, Kochersberger G, Studenski S. Is lower extremity strength gain associated with improvement in physical performance and disability in frail, community-dwelling elders? Arch Phys Med Rehabil. 1998;79(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  88. Hannan MT, Cheng DM, Green E, Swift C, Rubin CT, Kiel DP. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study. Osteoporos Int. 2004;15(11):918–26.

    Article  PubMed  Google Scholar 

  89. Judex S, Donahue LR, Rubin C. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J. 2002;16(10):1280–2.

    CAS  PubMed  Google Scholar 

  90. Demirbag D, Ozdemir F, Ture M. Effects of coffee consumption and smoking habit on bone mineral density. Rheumatol Int. 2006;26(6):530–5.

    Article  CAS  PubMed  Google Scholar 

  91. Cardinale M, Lim J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res. 2003;17(3):621–4.

    PubMed  Google Scholar 

  92. Bovenzi M. Low back pain disorders and exposure to whole-body vibration in the workplace. Semin Perinatol. 1996;20(1):38–53.

    Article  CAS  PubMed  Google Scholar 

  93. Drerup B, Granitzka M, Assheuer J, Zerlett G. Assessment of disc injury in subjects exposed to long-term whole-body vibration. Eur Spine J. 1999;8(6):458–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Curry BD, Bain JL, Yan JG, Zhang LL, Yamaguchi M, Matloub HS, et al. Vibration injury damages arterial endothelial cells. Muscle Nerve. 2002;25(4):527–34.

    Article  PubMed  Google Scholar 

  95. Boshuizen HC, Bongers PM, Hulshof CT. Self-reported back pain in fork-lift truck and freight-container tractor drivers exposed to whole-body vibration. Spine (Phila Pa 1976). 1992;17(1):59–65.

    Article  CAS  Google Scholar 

  96. Pasqualini M, Lavet C, Elbadaoui M, Vanden-Bossche A, Laroche N, Gnyubkin V, et al. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects. Bone. 2013;55(1):69–77. This dose–response study of mature male rats examined the bone effects of differing vibration frequency (8, 52 and 90 Hz) at a constant acceleration (0.7 g). They observed the most beneficial effects from stimulation at 90 Hz and deleterious effects at 8 Hz. Although it is not known how those specific frequency responses translate to the human condition, they provide evidence that the nature of the vibration stimulus will be a vital element in the development of therapeutic WBV recommendations.

    Article  PubMed  Google Scholar 

  97. Ezenwa B, Yeoh HT. Multiple vibration displacements at multiple vibration frequencies stress impact on human femur computational analysis. J Rehabil Res Dev. 2011;48(2):179–89.

    Article  PubMed  Google Scholar 

  98. Rittweger J, Just K, Kautzsch K, Reeg P, Felsenberg D. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial. Spine (Phila Pa 1976). 2002;27(17):1829–34.

    Article  Google Scholar 

  99. Muir J, Kiel DP, Rubin CT. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J Sci Med Sport. 2013;16(6):526–31.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

My thanks to Dr Shirley Wee for assistance with the graphic design of Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda R. Beck.

Ethics declarations

Conflict of Interest

Dr. Beck states that this article has no conflicts of interests.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Skeletal Biology and Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, B.R. Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy. Curr Osteoporos Rep 13, 381–389 (2015). https://doi.org/10.1007/s11914-015-0294-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0294-8

Keywords

Navigation