Skip to main content

Advertisement

Log in

Ophthalmology Issues in Schizophrenia

  • Schizophrenia and Other Psychotic Disorders (SJ Siegel, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Schizophrenia is a complex mental disorder associated with not only cognitive dysfunctions, such as memory and attention deficits, but also changes in basic sensory processing. Although most studies on schizophrenia have focused on disturbances in higher-order brain functions associated with the prefrontal cortex or frontal cortex, recent investigations have also reported abnormalities in low-level sensory processes, such as the visual system. At very early stages of the disease, schizophrenia patients frequently describe in detail symptoms of a disturbance in various aspects of visual perception that may lead to worse clinical symptoms and decrease in quality of life. Therefore, the aim of this review is to describe the various studies that have explored the visual issues in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Report WHOMH. Mental Health: New understanding, New Hope, Geneva World Health Organization. 2001.

  2. Stefansson H, Ophoff RA, Steinberg S, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. International Schizophrenia C, Purcell SM, Wray NR, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    Google Scholar 

  4. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    CAS  PubMed  Google Scholar 

  5. Yeap S, Kelly SP, Sehatpour P, et al. Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci. 2008;258:305–16.

    PubMed  Google Scholar 

  6. Butler PD, Schechter I, Zemon V, et al. Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry. 2001;158:1126–33.

    CAS  PubMed  Google Scholar 

  7. Butler PD, Javitt DC. Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry. 2005;18:151–7.

    PubMed Central  PubMed  Google Scholar 

  8. Slaghuis WL. Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J Abnorm Psychol. 1998;107:49–62.

    CAS  PubMed  Google Scholar 

  9. Chen Y, Levy DL, Sheremata S, et al. Compromised late-stage motion processing in schizophrenia. Biol Psychiatry. 2004;55:834–41.

    PubMed  Google Scholar 

  10. Butler PD, Zemon V, Schechter I, et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry. 2005;62:495–504.

    PubMed Central  PubMed  Google Scholar 

  11. Giersch A, Lalanne L, van Assche M, et al. On disturbed time continuity in schizophrenia: an elementary impairment in visual perception? Front Psychol. 2013;4:281. This manuscript review the mechanisms involved in the sense of time continuity and clinical evidence that they are impaired in schizophrenia.

    PubMed Central  PubMed  Google Scholar 

  12. Javitt DC. Glutamate and schizophrenia: phencyclidine N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69–108.

    CAS  PubMed  Google Scholar 

  13. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 1988;1:179–86.

    CAS  Google Scholar 

  14. Djamgoz MB, Hankins MW, Hirano J, et al. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res. 1997;37:3509–29.

    CAS  PubMed  Google Scholar 

  15. Frederick JM, Rayborn ME, Laties AM, et al. Dopaminergic neurons in the human retina. J Comp Neurol. 1982;210:65–79.

    CAS  PubMed  Google Scholar 

  16. Haft M, van Hemmen JL. Theory and implementation of infomax filters for the retina. Network. 1998;9:39–71.

    CAS  PubMed  Google Scholar 

  17. Behrens U, Wagner HJ. Terminal nerve and vision. Microsc Res Tech. 2004;65:25–32.

    CAS  PubMed  Google Scholar 

  18. Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci. 1990;13:296–302.

    CAS  PubMed  Google Scholar 

  19. Deutsch SI, Rosse RB, Schwartz BL, et al. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol. 2001;24:43–9.

    CAS  PubMed  Google Scholar 

  20. Bressan RA, Pilowsky LS. Glutamatergic hypothesis of schizophrenia. Rev Bras Psiquiatr (Sao Paulo, Brazil: 1999). 2003;25:177–83.

    Google Scholar 

  21. Jojich L, Pourcho RG. Glutamate immunoreactivity in the cat retina: a quantitative study. Vis Neurosci. 1996;13:117–33.

    CAS  PubMed  Google Scholar 

  22. Ehinger B, Ottersen OP, Storm-Mathisen J, et al. Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc Natl Acad Sci U S A. 1988;85:8321–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res. 1997;37:3483–93.

    CAS  PubMed  Google Scholar 

  24. Peng YW, Blackstone CD, Huganir RL, et al. Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience. 1995;66:483–97.

    CAS  PubMed  Google Scholar 

  25. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    CAS  PubMed  Google Scholar 

  26. Lee WW, Tajunisah I, Sharmilla K, et al. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:7785–92. The first study evaluating the RNFL thickness in schizophrenic patients using spectral domain OCT (SD-OCT) and also evaluated schizophrenic patients in different phases of the disease.

    PubMed  Google Scholar 

  27. Parisi V, Restuccia R, Fattapposta F, et al. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2001;112:1860–7.

    CAS  Google Scholar 

  28. Lu Y, Li Z, Zhang X, et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett. 2010;480:69–72.

    CAS  PubMed  Google Scholar 

  29. Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease. Vis Res. 2004;44:2793–7.

    PubMed  Google Scholar 

  30. Cabezon L, Ascaso F, Ramiro P, et al. Optical coherence tomography: a window into the brain of schizophrenic patients. Acta ophthalmology. 2012; 90:

  31. Ascaso F, Cabezon L, Quintanilla MA, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: a short report. Eur J Psychiatry. 2010;24:227–35.

    Google Scholar 

  32. Chu EM, Kolappan M, Barnes TR, et al. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res. 2012;203:89–94.

    PubMed Central  PubMed  Google Scholar 

  33. Skottun BC, Skoyles JR. On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophr Bull. 2011;37:23–6. The study discuss the issue of assess the magnocellular and parvocellular sensitivity in schizophrenic individuals using steady-state visually evoked potentials (VEPs).

    PubMed Central  PubMed  Google Scholar 

  34. Ferrera VP, Nealey TA, Maunsell JH. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci: Off J Soc Neurosci. 1994;14:2080–8.

    CAS  Google Scholar 

  35. Nassi JJ, Lyon DC, Callaway EM. The parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron. 2006;50:319–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Sincich LC, Park KF, Wohlgemuth MJ, et al. Bypassing V1: a direct geniculate input to area MT. Nat Neurosci. 2004;7:1123–8.

    CAS  PubMed  Google Scholar 

  37. Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nature reviews. Neuroscience. 2009;10:360–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Shapley R. Visual sensitivity and parallel retinocortical channels. Annu Rev Psychol. 1990;41:635–58.

    CAS  PubMed  Google Scholar 

  39. Maunsell JH, Ghose GM, Assad JA, et al. Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci. 1999;16:1–14.

    CAS  PubMed  Google Scholar 

  40. Schiller PH, Malpeli JG. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol. 1978;41:788–97.

    CAS  PubMed  Google Scholar 

  41. Shapley R, Reid RC, Kaplan E. Receptive fields of P and M cells in the monkey retina and their photoreceptor inputs. Neuroscience research. Suppl: Off J Japan Neurosci Soc. 1991;15:S199–211.

    CAS  Google Scholar 

  42. Denison RN, Vu AT, Yacoub E, et al. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage. 2014;102p2:358–69. The study shows the use of fMRI to identify magnocellular and parvocellular regions of human LGN.

    Google Scholar 

  43. Cheong SK, Tailby C, Martin PR, et al. Slow intrinsic rhythm in the koniocellular visual pathway. Proc Natl Acad Sci U S A. 2011;108:14659–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Martinez A, Hillyard SA, Dias EC, et al. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci: Off J Soc Neurosci. 2008;28:7492–500.

    CAS  Google Scholar 

  45. Skottun BC, Skoyles JR. Contrast sensitivity and magnocellular functioning in schizophrenia. Vis Res. 2007;47:2923–33.

    PubMed  Google Scholar 

  46. Kim D, Wylie G, Pasternak R, et al. Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res. 2006;82:1–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Doniger GM, Foxe JJ, Murray MM, et al. Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatr. 2002;59:1011–20.

    PubMed  Google Scholar 

  48. Merigan WH, Maunsell JH. How parallel are the primate visual pathways? Annu Rev Neurosci. 1993;16:369–402.

    CAS  PubMed  Google Scholar 

  49. Merigan WH, Maunsell JH. Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci. 1990;5:347–52.

    CAS  PubMed  Google Scholar 

  50. Merigan WH, Katz LM, Maunsell JH. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci: Off J Soc Neurosci. 1991;11:994–1001.

    CAS  Google Scholar 

  51. Merigan WH, Byrne CE, Maunsell JH. Does primate motion perception depend on the magnocellular pathway? J Neurosci: Off J Soc Neurosci. 1991;11:3422–9.

    CAS  Google Scholar 

  52. Tolhurst DJ. Reaction times in the detection of gratings by human observers: a probabilistic mechanism. Vis Res. 1975;15:1143–9.

    CAS  PubMed  Google Scholar 

  53. Legge GE. Sustained and transient mechanisms in human vision: temporal and spatial properties. Vis Res. 1978;18:69–81.

    CAS  PubMed  Google Scholar 

  54. Slaghuis WL, Thompson AK. The effect of peripheral visual motion on focal contrast sensitivity in positive- and negative-symptom schizophrenia. Neuropsychologia. 2003;41:968–80.

    PubMed  Google Scholar 

  55. Slaghuis WL, Bishop AM. Luminance flicker sensitivity in positive- and negative-symptom schizophrenia. Exp Brain Res. 2001;138:88–99.

    CAS  PubMed  Google Scholar 

  56. Slaghuis WL. Spatio-temporal luminance contrast sensitivity and visual backward masking in schizophrenia. Exp Brain Res. 2004;156:196–211.

    PubMed  Google Scholar 

  57. Revheim N, Butler PD, Schechter I, et al. Reading impairment and visual processing deficits in schizophrenia. Schizophr Res. 2006;87:238–45.

    PubMed Central  PubMed  Google Scholar 

  58. Lima FB, Gracitelli CP, Paranhos Junior A, et al. Evaluation of magnocellular pathway abnormalities in schizophrenia: a frequency doubling technology study and clinical implications. Arq Bras Oftalmol. 2013;76:85–9. The study discussed an interesting and controversial topic about magnocellular pathway deficit using frequency doubling technology in patients with schizophrenia and evaluate the relationship between the deficit in visual processing with socio-demographic factors and clinical factors associated with chronicity, such as negative symptoms, duration of the disease, and antipsychotic drug use.

    PubMed  Google Scholar 

  59. Evans MA, Shedden JM, Hevenor SJ, et al. The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing. Neuropsychologia. 2000;38:225–39.

    CAS  PubMed  Google Scholar 

  60. Gutherie AH, McDowell JE, Hammond Jr BR. Scotopic sensitivity in schizophrenia. Schizophr Res. 2006;84:378–85.

    PubMed  Google Scholar 

  61. Delord S, Ducato MG, Pins D, et al. Psychophysical assessment of magno- and parvocellular function in schizophrenia. Vis Neurosci. 2006;23:645–50.

    PubMed  Google Scholar 

  62. Braus DF, Weber-Fahr W, Tost H, et al. Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study. Arch Gen Psychiatr. 2002;59:696–701.

    PubMed  Google Scholar 

  63. Barch DM, Mathews JR, Buckner RL, et al. Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. NeuroImage. 2003;20:1884–93.

    PubMed  Google Scholar 

  64. Schwartz BD, McGinn T, Winstead DK. Disordered spatiotemporal processing in schizophrenics. Biol Psychiatr. 1987;22:688–98.

    CAS  Google Scholar 

  65. Saccuzzo DP, Braff DL. Early information processing deficit in schizophrenia. New findings using schizophrenic subgroups and manic control subjects. Arch Gen Psychiatr. 1981;38:175–9.

    CAS  PubMed  Google Scholar 

  66. Keri S, Kelemen O, Janka Z, et al. Visual-perceptual dysfunctions are possible endophenotypes of schizophrenia: evidence from the psychophysical investigation of magnocellular and parvocellular pathways. Neuropsychology. 2005;19:649–56.

    PubMed  Google Scholar 

  67. Schechter I, Butler PD, Silipo G, et al. Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophr Res. 2003;64:91–101.

    PubMed  Google Scholar 

  68. Gracitelli CP, de Lima Vaz FB, Bressan RA, et al. Visual field loss in schizophrenia: evaluation of magnocellular pathway dysfunction in schizophrenic patients and their parents. Clin Ophthalmol (Auckland, NZ). 2013;7:1015–21. This study address an important topic that there is a lower global sensitivity in schizophrenic patients and their parents compared with controls.

    Google Scholar 

  69. Tootell RB, Switkes E, Silverman MS, et al. Functional anatomy of macaque striate cortex II. Retinotopic organization. J Neurosci: Off J Soc Neurosci. 1988;8:1531–68.

    CAS  Google Scholar 

  70. Skottun BC, Skoyles JR. Are masking abnormalities in schizophrenia limited to backward masking? Int J Neurosci. 2009;119:88–104.

    PubMed  Google Scholar 

  71. Slaghuis WL, Bakker VJ. Forward and backward visual masking of contour by light in positive- and negative-symptom schizophrenia. J Abnorm Psychol. 1995;104:41–54.

    CAS  PubMed  Google Scholar 

  72. Phillipson OT, Harris JP. Perceptual changes in schizophrenia: a questionnaire survey. Psycholog Med. 1985;15:859–66.

    CAS  Google Scholar 

  73. Harris JP, Calvert JE, Leendertz JA, et al. The influence of dopamine on spatial vision. Eye. 1990;4(Pt 6):806–12.

    PubMed  Google Scholar 

  74. Bodis-Wollner I. Altered spatio-temporal contrast vision in Parkinson’s disease and MPTP-treated monkeys: the role of dopamine. In: Bodis-Wollner I, editor. Dopaminergic mechanisms in vision. New York: A.R. Liss Inc; 1988. p. 205–20.

    Google Scholar 

  75. Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev. 2008;32:611–56.

    CAS  PubMed  Google Scholar 

  76. Calvert JE, Harris JP, Phillipson OT. Probing the visual system of Parkinson’s disease and chronic schizophrenic patients on depot neuroleptic using the tilt after effect. Clin Vis Sci. 1992;7:119–27.

    Google Scholar 

  77. Shuwairi SM, Cronin-Golomb A, McCarley RW, et al. Color discrimination in schizophrenia. Schizophr Res. 2002;55:197–204.

    PubMed  Google Scholar 

  78. Buttner T, Kuhn W, Muller T, et al. Visual hallucinosis: the major clinical determinant of distorted chromatic contour perception in Parkinson’s disease. J Neural Transm (Vienna, Austria: 1996). 1996;103:1195–204.

    CAS  Google Scholar 

  79. Paulus W, Schwarz G, Werner A, et al. Impairment of retinal increment thresholds in Huntington’s disease. Ann Neurol. 1993;34:574–8.

    CAS  PubMed  Google Scholar 

  80. de Xivry JJ O, Lefevre P. Saccades and pursuit: two outcomes of a single sensorimotor process. J Physiol. 2007;584:11.

    Google Scholar 

  81. Lisberger SG, Evinger C, Johanson GW, et al. Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J Neurophysiol. 1981;46:229–49.

    CAS  PubMed  Google Scholar 

  82. Fender DH, Nye PW. The effects of retinal image motion in a simple pattern recognition task. Kybernetik. 1962;1:192–9.

    CAS  PubMed  Google Scholar 

  83. Engelken EJ, Wolfe JW. A modeling approach to the assessment of smooth pursuit eye movement. Aviat Space Environ Med. 1979;50:1102–7.

    CAS  PubMed  Google Scholar 

  84. Baloh RW, Kumley WE, Sills AW, et al. Quantitative measurement of smooth pursuit eye movements. Ann Otol Rhinol Laryngol. 1976;85:111–9.

    CAS  PubMed  Google Scholar 

  85. Yee RD. Eye movement recording as a clinical tool. Ophthalmology. 1983;90:211–22.

    CAS  PubMed  Google Scholar 

  86. Diefendorf AR, Dogde R. An experimental study of the ocular reactions of the insane from photographic records. Brain. 1908;31:451. Oxford Univ. Press.

    Google Scholar 

  87. Mather JA, Putchat C. Motor control of schizophrenics—I. Oculomotor control of schizophrenics: a deficit in sensory processing, not strictly in motor control. J Psychiatr Res. 1982;17:343–60.

    PubMed  Google Scholar 

  88. Bartfai A, Levander SE, Nyback H, et al. Smooth pursuit eye tracking, neuropsychological test performance, and computed tomography in schizophrenia. Psychiatr Res. 1985;15:49–62.

    CAS  Google Scholar 

  89. Tanaka M, Fukushima K. Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. J Neurophysiol. 1998;80:28–47.

    CAS  PubMed  Google Scholar 

  90. Hong LE, Tagamets M, Avila M, et al. Specific motion processing pathway deficit during eye tracking in schizophrenia: a performance-matched functional magnetic resonance imaging study. Biol Psychiatr. 2005;57:726–32.

    Google Scholar 

  91. Fox PT, Fox JM, Raichle ME, et al. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol. 1985;54:348–69.

    CAS  PubMed  Google Scholar 

  92. Fukushima J, Fukushima K, Chiba T, et al. Disturbances of voluntary control of saccadic eye movements in schizophrenic patients. Biol Psychiatr. 1988;23:670–7.

    CAS  Google Scholar 

  93. Fukushima J, Morita N, Fukushima K, et al. Voluntary control of saccadic eye movements in patients with schizophrenic and affective disorders. J Psychiatr Res. 1990;24:9–24.

    CAS  PubMed  Google Scholar 

  94. Bender J, Reuter B, Mollers D, et al. Neural correlates of impaired volitional action control in schizophrenia patients. Psychophysiology. 2013;50:872–84. The study aimed at identifying neural correlates of Slowed initiation of volitional but not visually guided saccades.

    PubMed  Google Scholar 

  95. Picard H, Le Seac’h A, Amado I, et al. Impaired saccadic adaptation in schizophrenic patients with high neurological soft sign scores. Psychiatr Res. 2012;199:12–8. This study shows that schizophrenic patients with high neurological soft signs scores have reduced saccade adaptation, providing neurophysiological evidence of cerebellar dysfunction.

    Google Scholar 

  96. Bolding MS, Lahti AC, White D, et al. Vergence eye movements in patients with schizophrenia. Vis Res. 2014;102:64–70.

    PubMed  Google Scholar 

  97. Abel LA, Levin S, Holzman PS. Abnormalities of smooth pursuit and saccadic control in schizophrenia and affective disorders. Vis Res. 1992;32:1009–14.

    CAS  PubMed  Google Scholar 

  98. Silverstein SM, Hatashita-Wong M, Schenkel LS, et al. Reduced top-down influences in contour detection in schizophrenia. Cogn Neuropsychiatry. 2006;11:112–32.

    PubMed  Google Scholar 

  99. Onitsuka T, Niznikiewicz MA, Spencer KM, et al. Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiatr. 2006;163:455–62.

    PubMed Central  PubMed  Google Scholar 

  100. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr. 2003;160:636–45.

    PubMed  Google Scholar 

  101. Chen Y, Nakayama K, Levy DL, et al. Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proc Natl Acad Sci U S A. 1999;96:4724–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Keri S, Kelemen O, Benedek G, et al. Different trait markers for schizophrenia and bipolar disorder: a neurocognitive approach. Psychol Med. 2001;31:915–22.

    CAS  PubMed  Google Scholar 

  103. Green MF, Nuechterlein KH, Mintz J. Backward masking in schizophrenia and mania. II. Specifying the visual channels. Arch Gen Psychiatr. 1994;51:945–51.

    CAS  PubMed  Google Scholar 

  104. Green MF, Nuechterlein KH, Breitmeyer B. Backward masking performance in unaffected siblings of schizophrenic patients. Evidence for a vulnerability indicator. Arch Gen Psychiatr. 1997;54:465–72.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Carolina P. B. Gracitelli, Ricardo Y. Abe, and Alberto Diniz-Filho declare that they have no conflict of interest. Fabiana Benites Vaz-de-Lima is a medical manager for Abbvie. Augusto Paranhos Jr. is a consultant for Allergan, Inc. Felipe A. Medeiros has received financial support from Alcon Laboratories Inc., Bausch & Lomb, Carl Zeiss Meditec Inc., Heidelberg Engineering, Inc., Merck Inc., Allergan Inc., Sensimed, Topcon, Inc, Reichert, Inc., National Eye Institute. Research grant–Alcon Laboratories Inc., Allergan Inc., Carl Zeiss Meditec Inc., Reichert Inc. Consultant–Allergan, Inc., Carl–Zeiss Meditec, Inc.; Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina P. B. Gracitelli.

Additional information

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracitelli, C.P.B., Abe, R.Y., Diniz-Filho, A. et al. Ophthalmology Issues in Schizophrenia. Curr Psychiatry Rep 17, 28 (2015). https://doi.org/10.1007/s11920-015-0569-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0569-x

Keywords

Navigation