Skip to main content

Advertisement

Log in

The Association of Adverse Pregnancy Outcomes and Cardiovascular Disease: Current Knowledge and Future Directions

  • Women’s Health (A Sarma, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Adverse pregnancy outcomes are associated with increased risk for future cardiovascular disease. The goal of this review is to share what is currently known about the increased risk and to identify areas for future research.

Recent findings

Severe studies have identified a strong association between adverse pregnancy outcomes and cardiovascular disease such as heart failure, valvular disease, ischemic heart disease, stroke, hypertension, and metabolic syndrome. The recognition of this increased risk is reflected in recent changes in prevention guidelines. The guidelines now recognize sex-specific risks such as preeclampsia and preterm delivery and recommend incorporating a pregnancy history to identify them earlier. However, no robust risk prediction tools incorporating these pregnancy risk factors have been developed and validated. While smaller clinical trials have been performed in reducing cardiovascular risk factors in the postpartum timeframe, there remains a paucity of large-scale randomized clinical trials that continue to show a risk reduction in these women.

Summary

While there is increasing recognition of the long-term cardiovascular risks associated with adverse pregnancy outcomes, there remains a need for interventional studies aimed at reducing this risk and for incorporation of pregnancy risk factors into traditional cardiovascular risk prediction tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK. Births: final data for 2018. Natl Vital Stat Rep. 2019;68:1–47.

    PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Preterm birth [Internet]. Available from: http://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm. Accessed 7/11/20.

  3. • Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes. J Am Coll Cardiol. 2019;73:2106–16. This review highlights the epidemiology and possible mechanisms of adverse pregnancy outcomes and future CVD, incorporating recent data.

  4. Kuklina E, Callaghan W. Chronic heart disease and severe obstetric morbidity among hospitalisations for pregnancy in the USA: 1995-2006: heart disease and severe morbidity in USA. BJOG Int J Obstet Gynaecol. 2011;118:345–52.

    Google Scholar 

  5. Correa A, Bardenheier B, Elixhauser A, Geiss LS, Gregg E. Trends in prevalence of diabetes among delivery hospitalizations, United States, 1993-2009. Matern Child Health J. 2015;19:635–42.

    PubMed  PubMed Central  Google Scholar 

  6. Sharma G, Lindley K, Grodzinsky A. Cardio-obstetrics. J Am Coll Cardiol. 2020;75:1355–9.

    PubMed  Google Scholar 

  7. Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, et al. Potential markers of preeclampsia – a review. Reprod Biol Endocrinol. 2009;7:70.

    PubMed  PubMed Central  Google Scholar 

  8. Hogan MC, Foreman KJ, Naghavi M, Ahn SY, Wang M, Makela SM, et al. Maternal mortality for 181 countries, 1980–2008: a systematic analysis of progress towards Millennium Development Goal 5. Lancet. 2010;375:1609–23.

    PubMed  Google Scholar 

  9. Wanderer JP, Leffert LR, Mhyre JM, Kuklina EV, Callaghan WM, Bateman BT. Epidemiology of obstetric-related ICU admissions in Maryland: 1999–2008*. Crit Care Med. 2013;41:1844–52.

    PubMed  PubMed Central  Google Scholar 

  10. Hypertension in Pregnancy: Executive Summary. Obstetrics & Gynecology. 2013;122(5):1122–31.

  11. Bellamy L, Casas J-P, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335:974.

    PubMed  PubMed Central  Google Scholar 

  12. Silverberg O, Park AL, Cohen E, Fell DB, Ray JG. Premature cardiac disease and death in women whose infant was preterm and small for gestational age: a retrospective cohort study. JAMA Cardiol. 2018;3:247–51.

    PubMed  PubMed Central  Google Scholar 

  13. Wilson BJ, Watson MS, Prescott GJ, Sunderland S, Campbell DM, Hannaford P, et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ. 2003;326:845.

    PubMed  PubMed Central  Google Scholar 

  14. Ray JG, Schull MJ, Kingdom JC, Vermeulen MJ. Heart failure and dysrhythmias after maternal placental syndromes: HAD MPS study. Heart. 2012;98:1136–41.

    PubMed  Google Scholar 

  15. Thilaganathan B, Kalafat E. Cardiovascular system in preeclampsia and beyond. Hypertension. 2019;73:522–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalafat E, Sukur YE, Abdi A, Thilaganathan B, Khalil A. Metformin for prevention of hypertensive disorders of pregnancy in women with gestational diabetes or obesity: systematic review and meta-analysis of randomized trials. Ultrasound Obstet Gynecol. 2018;52:706–14.

    CAS  PubMed  Google Scholar 

  17. Giannakou K, Evangelou E, Papatheodorou SI. Genetic and non-genetic risk factors for pre-eclampsia: umbrella review of systematic reviews and meta-analyses of observational studies: genetic and non-genetic risk factors for PE. Ultrasound Obstet Gynecol. 2018;51:720–30.

    CAS  PubMed  Google Scholar 

  18. Egeland GM, Klungsøyr K, Øyen N, Tell GS, Næss Ø, Skjærven R. Preconception cardiovascular risk factor differences between gestational hypertension and preeclampsia: cohort Norway study. Hypertension. 2016;67:1173–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Perry H, Khalil A, Thilaganathan B. Preeclampsia and the cardiovascular system: an update. Trends Cardiovasc Med. 2018;28:505–13.

    PubMed  Google Scholar 

  20. Serrano NC, Guio-Mahecha E, Quintero-Lesmes DC, Becerra-Bayona S, Paez MC, Beltran M, et al. Lipid profile, plasma apolipoproteins, and pre-eclampsia risk in the GenPE case-control study. Atherosclerosis. 2018;276:189–94.

    CAS  PubMed  Google Scholar 

  21. Behrens I, Basit S, Melbye M, Lykke JA, Wohlfahrt J, Bundgaard H, et al. Risk of post-pregnancy hypertension in women with a history of hypertensive disorders of pregnancy: nationwide cohort study. BMJ. 2017;358:j3078.

    PubMed  PubMed Central  Google Scholar 

  22. Heida KY, Franx A, van Rijn BB, Eijkemans MJC, Boer JMA, Verschuren MWM, et al. Earlier age of onset of chronic hypertension and type 2 diabetes mellitus after a hypertensive disorder of pregnancy or gestational diabetes mellitus. Hypertension. 2015;66:1116–22.

    CAS  PubMed  Google Scholar 

  23. • Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol. 2019;74:2743–54. This study showed that hypertensive disorders of pregnancy are associated with accelerated cardiovascular aging and may be useful to refine CVD risk assessments.

  24. Leslie MS, Briggs LA. Preeclampsia and the risk of future vascular disease and mortality: a review. J Midwif Women’s Health. 2016;61:315–24.

    Google Scholar 

  25. White WM, Mielke MM, Araoz PA, Lahr BD, Bailey KR, Jayachandran M, et al. A history of preeclampsia is associated with a risk for coronary artery calcification 3 decades later. Am J Obstet Gynecol. 2016;214:519.e1–8.

    Google Scholar 

  26. Zoet GA, Benschop L, Boersma E, Budde RPJ, Fauser BCJM, van der Graaf Y, et al. Prevalence of subclinical coronary artery disease assessed by coronary computed tomography angiography in 45- to 55-year-old women with a history of preeclampsia. Circulation. 2018;137:877–9.

    PubMed  Google Scholar 

  27. Beckman JP, Camp JJ, Lahr BD, Bailey KR, Kearns AE, Garovic VD, et al. Pregnancy history, coronary artery calcification and bone mineral density in menopausal women. Climacteric. 2018;21:53–9.

    CAS  PubMed  Google Scholar 

  28. Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.

    CAS  PubMed  Google Scholar 

  29. Feig DS, Shah BR, Lipscombe LL, Wu CF, Ray JG, Lowe J, et al. Preeclampsia as a risk factor for diabetes: a population-based cohort study. Middleton P, editor. PLoS Med. 2013;10:e1001425.

    PubMed  PubMed Central  Google Scholar 

  30. Veerbeek JHW, Hermes W, Breimer AY, van Rijn BB, Koenen SV, Mol BW, et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65:600–6.

    CAS  PubMed  Google Scholar 

  31. Al-Nasiry S, Ghossein-Doha C, Polman S, Lemmens S, Scholten R, Heidema W, et al. Metabolic syndrome after pregnancies complicated by pre-eclampsia or small-for-gestational-age: a retrospective cohort. BJOG: Int J Obstet Gy. 2015;122:1818–23.

    CAS  Google Scholar 

  32. Bello N, Rendon ISH, Arany Z. The relationship between pre-eclampsia and peripartum cardiomyopathy. J Am Coll Cardiol. 2013;62:1715–23.

    PubMed  PubMed Central  Google Scholar 

  33. Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L, et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature. 2012;485:333–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen CW, Jaffe IZ, Karumanchi SA. Pre-eclampsia and cardiovascular disease. Cardiovasc Res. 2014;101:579–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension. 2011;58:709–15.

    CAS  PubMed  Google Scholar 

  36. Scantlebury DC, Kane GC, Wiste HJ, Bailey KR, Turner ST, Arnett DK, et al. Left ventricular hypertrophy after hypertensive pregnancy disorders. Heart. 2015;101:1584–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tangren JS, Powe CE, Ankers E, Ecker J, Bramham K, Hladunewich MA, et al. Pregnancy outcomes after clinical recovery from AKI. JASN. 2017;28:1566–74.

    CAS  PubMed  Google Scholar 

  38. Stergiotou I, Bijnens B, Cruz-Lemini M, Figueras F, Gratacos E, Crispi F. Maternal subclinical vascular changes in fetal growth restriction with and without pre-eclampsia: maternal vascular remodeling in FGR and PE. Ultrasound Obstet Gynecol. 2015;46:706–12.

    CAS  PubMed  Google Scholar 

  39. Sep S, Schreurs M, Bekkers S, Kruse A, Smits L, Peeters L. Early-pregnancy changes in cardiac diastolic function in women with recurrent pre-eclampsia and in previously pre-eclamptic women without recurrent disease: diastolic function early in recurrent pre-eclampsia. BJOG Int J Obstet Gynaecol. 2011;118:1112–9.

    CAS  Google Scholar 

  40. Ghossein-Doha C, Spaanderman MEA, Al Doulah R, Van Kuijk SM, Peeters LLH. Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic women according to recurrence of pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:96–103.

    CAS  PubMed  Google Scholar 

  41. Milic NM, Milin-Lazovic J, Weissgerber TL, Trajkovic G, White WM, Garovic VD. Preclinical atherosclerosis at the time of pre-eclamptic pregnancy and up to 10 years postpartum: systematic review and meta-analysis: pre-eclampsia and preclinical atherosclerosis. Ultrasound Obstet Gynecol. 2017;49:110–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brouwers L, van der Meiden-van Roest A, Savelkoul C, Vogelvang T, Lely A, Franx A, et al. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: a systematic review and meta-analysis. BJOG: Int J Obstet Gy. 2018;125:1642–54.

    CAS  Google Scholar 

  43. Theilen LH, Meeks H, Fraser A, Esplin MS, Smith KR, Varner MW. Long-term mortality risk and life expectancy following recurrent hypertensive disease of pregnancy. Am J Obstet Gynecol. 2018;219:107.e1–6.

    Google Scholar 

  44. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2019. Diabetes Care. 2019;42:S13–28.

    Google Scholar 

  45. • Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol. 2018;131:e49–64. ACOG's practice bulletin on gestational diabetes mellitus provides updated guidance on management of GDM.

  46. Garrison A. Screening, diagnosis, and management of gestational diabetes mellitus. Am Fam Physician. 2015;91:460–7.

    PubMed  Google Scholar 

  47. Diabetes During Pregnancy | Maternal Infant Health | Reproductive Health | CDC [Internet]. [cited 2020 Apr 4]. Available from: https://www.cdc.gov/reproductivehealth/maternalinfanthealth/diabetes-during-pregnancy.htm.

  48. Bellamy L, Casas J-P, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9.

    CAS  PubMed  Google Scholar 

  49. Kaul P, Savu A, Nerenberg KA, Donovan LE, Chik CL, Ryan EA, et al. Impact of gestational diabetes mellitus and high maternal weight on the development of diabetes, hypertension and cardiovascular disease: a population-level analysis. Diabet Med. 2015;32:164–73.

    CAS  PubMed  Google Scholar 

  50. Carr DB, Utzschneider KM, Hull RL, Tong J, Wallace TM, Kodama K, et al. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. 2006

  51. Retnakaran R, Qi Y, Connelly PW, Sermer M, Hanley AJ, Zinman B. The graded relationship between glucose tolerance status in pregnancy and postpartum levels of low-density-lipoprotein cholesterol and apolipoprotein B in young women: implications for future cardiovascular risk. J Clin Endocrinol Metab. 2010;95:4345–53.

    CAS  PubMed  Google Scholar 

  52. Pirkola J, Pouta A, Bloigu A, Miettola S, Hartikainen AL, Järvelin MR, et al. Prepregnancy overweight and gestational diabetes as determinants of subsequent diabetes and hypertension after 20-year follow-up. J Clin Endocrinol Metab. 2010;95:772–8.

    CAS  PubMed  Google Scholar 

  53. • Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62:905–14. This meta-analysis evaluated the impact of gestational diabetes on future CVD risk and demonstrated that the increased risk was independent of the subsequent development of type 2 diabetes.

  54. Harreiter J, Dovjak G, Kautzky-Willer A. Gestational diabetes mellitus and cardiovascular risk after pregnancy. Women Health. 2014;10:91–108.

    CAS  Google Scholar 

  55. Vrachnis N, Augoulea A, Iliodromiti Z, Lambrinoudaki I, Sifakis S, Creatsas G. Previous gestational diabetes mellitus and markers of cardiovascular risk. Int J Endocrinol. 2012;2012:1–6.

    Google Scholar 

  56. Heitritter SM, Solomon CG, Mitchell GF, Skali-Ounis N, Seely EW. Subclinical inflammation and vascular dysfunction in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab. 2005;90:3983–8.

    CAS  PubMed  Google Scholar 

  57. Bo S, Valpreda S, Menato G, Bardelli C, Botto C, Gambino R, et al. Should we consider gestational diabetes a vascular risk factor? Atherosclerosis. 2007;194:72–9.

    Google Scholar 

  58. Practice Bulletin No. 171: Management of Preterm Labor. Obstetrics & Gynecology. 2016;128:e155–64.

  59. • Wu P, Gulati M, Kwok CS, Wong CW, Narain A, O’Brien S, et al. Preterm delivery and future risk of maternal cardiovascular disease: a systematic review and meta-analysis. JAHA [Internet]. 2018 [cited 2020 Jul 9];7. Available from: https://doi.org/10.1161/JAHA.117.007809. This study adds to prior literature on preterm delivery and maternal CVD by conducting a meta-analysis that incorporated more recent studies with larger sample sizes, showing that preterm delivery is associated wtih maternal CVD and mortality.

  60. Rich-Edwards JW, Klungsoyr K, Wilcox AJ, Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: a population-based study. Am J Obstet Gynecol. 2015;213:518.e1–8.

    Google Scholar 

  61. Hastie CE, Smith GC, MacKay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: retrospective cohort study of 750 350 singleton pregnancies. Int J Epidemiol. 2011;40:914–9.

    PubMed  Google Scholar 

  62. Bryant AS, Worjoloh A, Caughey AB, Washington AE. Racial/ethnic disparities in obstetric outcomes and care: prevalence and determinants. Am J Obstet Gynecol. 2010;202:335–43.

    PubMed  PubMed Central  Google Scholar 

  63. Bentley-Lewis R, Powe C, Ankers E, Wenger J, Ecker J, Thadhani R. Effect of race/ethnicity on hypertension risk subsequent to gestational diabetes mellitus. Am J Cardiol. 2014;113:1364–70.

    PubMed  PubMed Central  Google Scholar 

  64. Silva LM, Coolman M, Steegers EA, Jaddoe VW, Moll HA, Hofman A, et al. Low socioeconomic status is a risk factor for preeclampsia: the Generation R Study. J Hypertens. 2008;26:1200–8.

    CAS  PubMed  Google Scholar 

  65. Caughey AB, Cheng YW, Stotland NE, Washington AE, Escobar GJ. Maternal and paternal race/ethnicity are both associated with gestational diabetes. YMOB. 2010;202:616.e1–5.

    Google Scholar 

  66. Manuck TA. Racial and ethnic differences in preterm birth: a complex, multifactorial problem. Semin Perinatol. 2017;41:511–8.

    PubMed  PubMed Central  Google Scholar 

  67. Centers for Disease Control and Prevention (CDC). Racial/ethnic disparities in neonatal mortality--United States, 1989–2001. MMWR Morb Mortal Wkly Rep. 2004;53:655–8.

    Google Scholar 

  68. Tucker MJ, Berg CJ, Callaghan WM, Hsia J. The black-white disparity in pregnancy-related mortality from 5 conditions: differences in prevalence and case-fatality rates. American Journal of Public Health. Am Publ Health Assoc. 2007;97:247–51.

    Google Scholar 

  69. Shahul S, Tung A, Minhaj M, Nizamuddin J, Wenger J, Mahmood E, et al. Racial disparities in comorbidities, complications, and maternal and fetal outcomes in women with preeclampsia/eclampsia. Hypertens Pregnancy. 2015;34:506–15.

    PubMed  PubMed Central  Google Scholar 

  70. Bo S, Menato G, Bardelli C, Lezo A, Signorile A, Repetti E, et al. Low socioeconomic status as a risk factor for gestational diabetes. Diabetes Metab. 2002;28:139–40.

    CAS  PubMed  Google Scholar 

  71. Messer LC, Vinikoor LC, Laraia BA, Kaufman JS, Eyster J, Holzman C, et al. Socioeconomic domains and associations with preterm birth. Soc Sci Med. 2008;67:1247–57.

    PubMed  Google Scholar 

  72. • Ross KM, Guardino C, Dunkel Schetter C, Hobel CJ. Interactions between race/ethnicity, poverty status, and pregnancy cardio-metabolic diseases in prediction of postpartum cardio-metabolic health. Ethn Health. 2018:1–16. This study assessed various socioeconomic and racial/ethnic factors in their association with pregnancy complications and cardiometabolic risk.

  73. Nakimuli A, Chazara O, Byamugisha J, Elliott AM, Kaleebu P, Mirembe F, et al. Pregnancy, parturition and preeclampsia in women of African ancestry. Am J Obstet Gynecol. 2014;210:510–520.e1.

    PubMed  PubMed Central  Google Scholar 

  74. ACOG Committee Opinion No. 743: low-dose Aspirin use during pregnancy. Obstet Gynecol 2018;132:e44–52.

  75. Cadavid AP. Aspirin: the mechanism of action revisited in the context of pregnancy complications. Front Immunol. 2017;8:261.

    PubMed  PubMed Central  Google Scholar 

  76. Schiff E, Peleg E, Goldenberg M, Rosenthal T, Ruppin E, Tamarkin M, et al. The use of Aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A 2 to prostacyclin in relatively high risk pregnancies. N Engl J Med. 1989;321:351–6.

    CAS  PubMed  Google Scholar 

  77. Naseem H, Dreixler J, Mueller A, Tung A, Dhir R, Chibber R, et al. Antepartum aspirin administration reduces activin A and cardiac global longitudinal strain in preeclamptic women. JAHA. 2020;9:e015997. https://doi.org/10.1161/JAHA.119.015997

  78. LeFevre ML. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161:819.

    PubMed  Google Scholar 

  79. Hoffman MK, Goudar SS, Kodkany BS, Metgud M, Somannavar M, Okitawutshu J, et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet. 2020;395:285–93.

    CAS  PubMed  Google Scholar 

  80. van Vliet EOG, Askie LA, Mol BWJ, Oudijk MA. Antiplatelet agents and the prevention of spontaneous preterm birth: a systematic review and meta-analysis. Obstet Gynecol. 2017;129:327–36.

    PubMed  Google Scholar 

  81. Tan MY, Poon LC, Rolnik DL, Syngelaki A, de Paco Matallana C, Akolekar R, et al. Prediction and prevention of small-for-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol. 2018;52:52–9.

    CAS  PubMed  Google Scholar 

  82. Zhang J, Han L, Li W, Chen Q, Lei J, Long M, et al. Early prediction of preeclampsia and small-for-gestational-age via multi-marker model in Chinese pregnancies: a prospective screening study. BMC Preg Childbirth. 2019;19:304.

    Google Scholar 

  83. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. Lancet. 1994;343:619–29.

  84. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

    CAS  PubMed  Google Scholar 

  85. Caritis S, Sibai B, Hauth J, Lindheimer MD, Klebanoff M, Thom E, et al. Low-dose aspirin to prevent preeclampsia in women at high risk. N Engl J Med. 1998;338:701–5.

    CAS  PubMed  Google Scholar 

  86. Low-dose aspirin in prevention and treatment of intrauterine growth retardation and pregnancy-induced hypertension. Italian study of aspirin in pregnancy. Lancet. 1993;341:396–400.

  87. • Henderson JT, Whitlock EP, O’Connor E, Senger CA, Thompson JH, Rowland MG. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;160:695. In this USPSTF statement, the authors conduct a systematic review of low dose aspirin for the prevention of preeclampsia and analyze data that led to the current recommendations on the use of low dose aspirin in women at elevated risk for preeclampsia.

  88. Andrikopoulou M, Purisch SE, Handal-Orefice R, Gyamfi-Bannerman C. Low-dose aspirin is associated with reduced spontaneous preterm birth in nulliparous women. Am J Obstet Gynecol. 2018;219:399.e1–6.

    Google Scholar 

  89. McCowan LM, Harding J, Roberts A, Barker S, Ford C, Stewart A. Administration of low-dose aspirin to mothers with small for gestational age fetuses and abnormal umbilical Doppler studies to increase birthweight: a randomised double-blind controlled trial. Br J Obstet Gynaecol. 1999;106:647–51.

    CAS  PubMed  Google Scholar 

  90. Trudinger BJ, Cook CM, Thompson RS, Giles WB, Connelly A. Low-dose aspirin therapy improves fetal weight in umbilical placental insufficiency. Am J Obstet Gynecol. 1988;159:681–5.

    CAS  PubMed  Google Scholar 

  91. Roberge S, Sibai B, McCaw-Binns A, Bujold E. Low-dose aspirin in early gestation for prevention of preeclampsia and small-for-gestational-age neonates: meta-analysis of large randomized trials. Amer J Perinatol. 2016;33:781–5.

    Google Scholar 

  92. Rich-Edwards JW, Stuart JJ, Skurnik G, Roche AT, Tsigas E, Fitzmaurice GM, et al. Randomized trial to reduce cardiovascular risk in women with recent preeclampsia. J Women's Health. 2019;28:1493–504.

    Google Scholar 

  93. Mann S, Hollier LM, McKay K, Brown H. What we can do about maternal mortality — and how to do it quickly. N Engl J Med. 2018;379:1689–91.

    PubMed  Google Scholar 

  94. • Brown HL, Warner JJ, Gianos E, Gulati M, Hill AJ, Hollier LM, et al. Promoting risk identification and reduction of cardiovascular disease in women through collaboration with obstetricians and gynecologists: a presidential advisory from the American Heart Association and the American college of obstetricians and gynecology. Circulation. 2018;137:e843–52. This statement from the AHA and ACOG highlights the importance of coordinated healthcare delivery among OB/GYNs and cardiologists in multiple areas of preventive care.

  95. ACOG Practice Bulletin No. 212: pregnancy and heart disease. Obstet Gynecol. 2019;133(5):e320–56.

    Google Scholar 

  96. ACOG Committee on Obstetric Practice. Presidential Task Force on Redefining the Postpartum Visit Committee on Obstetric Practice. Obstet Gynecol. 2018;131(5):e140–50.

    Google Scholar 

  97. • Grandi SM, Filion KB, Yoon S, Ayele HT, Doyle CM, Hutcheon JA, et al. Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications: systematic review and meta-analysis. Circulation. 2019;139:1069–79. This systematic review incorporates a broader range of pregnancy complications outside of the commonly studied preeclampsia, gestational diabetes, or preterm delivery and demonstrates their increased association with future CVD.

  98. Markovitz AR, Stuart JJ, Horn J, Williams PL, Rimm EB, Missmer SA, et al. Does pregnancy complication history improve cardiovascular disease risk prediction? Findings from the HUNT study in Norway. Eur Heart J. 2019;40:1113–20.

    PubMed  Google Scholar 

  99. Stuart JJ, Tanz LJ, Cook NR, Spiegelman D, Missmer SA, Rimm EB, et al. Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction. J Am Coll Cardiol. 2018;72:1252–63.

    PubMed  PubMed Central  Google Scholar 

  100. Timpka S, Fraser A, Schyman T, Stuart JJ, Åsvold BO, Mogren I, et al. The value of pregnancy complication history for 10-year cardiovascular disease risk prediction in middle-aged women. Eur J Epidemiol. 2018;33:1003–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68:1447–58.

    PubMed  Google Scholar 

  102. Ciftci FC, Caliskan M, Ciftci O, Gullu H, Uckuyu A, Toprak E, et al. Impaired coronary microvascular function and increased intima–media thickness in preeclampsia. J Am Soc Hyperten. 2014;8:820–6.

    Google Scholar 

  103. Timpka S, Stuart JJ, Tanz LJ, Rimm EB, Franks PW, Rich-Edwards JW. Lifestyle in progression from hypertensive disorders of pregnancy to chronic hypertension in Nurses’ Health Study II: observational cohort study. BMJ. 2017:j3024.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garima Sharma MD.

Ethics declarations

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

Anum S. Minhas, Wendy Ying, S. Michelle Ogunwole, Michael Miller, Sammy Zakaria, Arthur J. Vaught, Allison G. Hays, Andreea A. Creanga, Ari Cedars, Erin D. Michos, Roger S. Blumenthal, and Garima Sharma declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women’s Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhas, A.S., Ying, W., Ogunwole, S.M. et al. The Association of Adverse Pregnancy Outcomes and Cardiovascular Disease: Current Knowledge and Future Directions. Curr Treat Options Cardio Med 22, 61 (2020). https://doi.org/10.1007/s11936-020-00862-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00862-6

Keywords

Navigation