Skip to main content
Log in

Effect of Gaseous Ozone on Papaya Anthracnose

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Anthracnose caused by the fungus Colletotrichum gloeosporioides is considered as one of the most devastating postharvest disease of papaya. The aim of this study was to evaluate the effectiveness of gaseous ozone as a potential antifungal preservation technique to overcome anthracnose disease of papaya during cold storage. Different concentrations of ozone (0 (control), 0.04, 1.6, and 4 ppm) were applied for various exposure durations (48, 96, and 144 h). Radial mycelia growth and conidial germination were evaluated in vitro after fungal exposure to the different levels and durations of ozone. Significant inhibition in radial mycelia growth of C. gloeosporioides was observed (p < 0.05) in all ozone treatments as compared to the control during 8 days of incubation at room temperature (25 ± 3 °C). Ozone treatment of papaya fruit with 1.6-ppm ozone for 96 h delayed and simultaneously decreased the disease incidence to 40 % whereas disease severity was rated at 1.7, following 28 days of storage at 12 ± 1 °C and 80 % relative humidity. The scanning electron microscopy showed that 4-ppm ozone caused disintegration of spore structure and did not affect the cuticular surface of fruit. Thus, ozone fumigation can reduce postharvest losses of papaya caused by anthracnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeles, F. B., Morgan, P. W., & Salveit, M. E. (1992). Ethylene in plant biology (2nd ed., p. 414). London: Academic.

    Google Scholar 

  • Aguayo, E., Escalona, V. H., & Artes, F. (2006). Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biology and Technology, 39, 169–177.

    Article  CAS  Google Scholar 

  • Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2010). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124, 620–626.

    Article  Google Scholar 

  • Alvarez, A. M., & Nishijima, W. T. (1987). Postharvest diseases of papaya. Plant Disease, 71, 681–686.

    Article  Google Scholar 

  • Baranovskaya, V. A., Zapolskii, O. B., Ovrutskaya, L. Y., Obodovskaya, N. N., Pschenichnaya, E. E., & Yushkevich, O. I. (1979). Use of ozone gas sterilization during storage of potatoes and vegetables. Koshervnaya I Ovoshchesushhil’naya Prom, 4, 10–12.

    Google Scholar 

  • Barnett, H. L., & Hunter, B. B. (1972). Illustrated genera of imperfect fungi (p. 24). USA: Burgess Publishing Co.

    Google Scholar 

  • Barth, M. M., Zhou, C., Mercier, J., & Payne, F. A. (1995). Ozone storage effects on anthocyanin content and fungal growth in blackberries. Journal of Food Science, 60, 1286–1288.

    Article  CAS  Google Scholar 

  • Bataller, M., González, J. E., Veliz, E., & Fernández, L. A. (2012). Ozone applications in the post-harvest of papaya (Carica papaya L.): an alternative to Amistar fungicide. Ozone: Science & Engineering: The Journal of the International Ozone Association, 34(3), 151–155.

    Article  CAS  Google Scholar 

  • Broadwater, W. T., Hoen, R. C., & King, P. H. (1973). Sensitivity of three selected bacterial species to ozone. Applied Microbiology, 26, 391–393.

    CAS  Google Scholar 

  • Cia, P., Pascholati, S. F., Benato, E. A., Camili, E. C., & Santos, C. A. (2007). Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose. Postharvest Biology and Technology, 43, 366–373.

    Article  CAS  Google Scholar 

  • Couey, H. M., & Farias, G. (1979). Control of postharvest decay of papaya. HortScience, 14, 719–721.

    CAS  Google Scholar 

  • Couey, H. M., Alvarez, A. M., & Nelson, M. G. (1984). Comparison of hot water spray and immersion treatment for control of postharvest decay of papaya. Plant Disease, 68, 436–437.

    Google Scholar 

  • Cronin, M. J., Yohalem, D. S., Harris, R. F., & Andrews, J. H. (1996). Putative mechanism and dynamics of inhibition of apple scab pathogen Venturia inequalis by compost extracts. Soil Biology and Biochemistry, 28, 1241–1249.

    Article  CAS  Google Scholar 

  • Currier, R., Toracco, D., & Cross, J. (2001). Deactivation of clumped and dirty spores of Bacillus globigii. Ozone Science and Engineering, 23, 285–294.

    Article  CAS  Google Scholar 

  • Ewell, A. W. (1940). Ozone and its applications in food preservation. Refrigeration application data book. In Sect. II. ‘Cold storage practice’ (2nd ed., pp. 199–203). Menasha: American Society of Refrigeration Engineering.

    Google Scholar 

  • Forney, C. F. (2003). Postharvest response of horticultural products to ozone. In D. M. Hodges (Ed.), Postharvest oxidative stress in horticultural crops (pp. 13–54). New York: Food Products Press.

    Google Scholar 

  • Forney, C. F., Song, J., Hildebrand, P. D., Fan, L., & McRae, K. B. (2007). Interactive effects of ozone and 1-methylcyclopropene on decay resistance and quality of stored carrots. Postharvest Biology and Technology, 45, 341–348.

    Article  CAS  Google Scholar 

  • Graham, D. M., Pariza, M., Glaze, W. H., Newell, G. W., Erdman, J. W., & Borzelleca, J. F. (1997). Use of ozone for food processing. Food Technology, 51, 72–75.

    Google Scholar 

  • Karaca, H., & Velioglu, S. Y. (2007). Ozone applications in fruit and vegetable processing. Food Review International, 23, 91–106.

    Article  CAS  Google Scholar 

  • Kechinski, C. P., Cândida, R. S. M., Pâmela, V. R. G., Caciano, P. Z. N., Lígia, D. F. M., Isabel, C. T., et al. (2011). Effects of ozonized water and heat treatment on the papaya fruit epidermis. Food and Bioproduct Process. doi:10.1016/j.fbp.2011.01.005.

  • Khadre, M. A., & Yousef, A. E. (2001). Sporicidal action of ozone and hydrogen peroxide: a comparative study. International Journal of Food Microbiology, 71, 131–138.

    Article  CAS  Google Scholar 

  • Kim, J. G., & Yousef, A. E. (2000). Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. Journal of Food Science, 65, 521–528.

    Article  CAS  Google Scholar 

  • Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of Food Protection, 62(9), 1071–1087.

    CAS  Google Scholar 

  • Kim, J. G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Advances in Food and Nutrition Research, 45, 167–218.

    Article  CAS  Google Scholar 

  • Kiran, B., Lalitha, V., & Raveesha, K. A. (2010). Screening of seven medicinal plants for antifungal activity against seed borne fungi of maize seeds. African Journal of Basic & Applied Sciences, 2(3–4), 99–103.

    Google Scholar 

  • Komanapalli, I. R., & Lau, B. H. S. (1996). Ozone-induced damage of Escherichia coli K-12. Applied Microbiology and Biotechnology, 46, 610–614.

    Article  CAS  Google Scholar 

  • Krause, C. R., & Weidensaul, T. C. (1978). Effects of ozone on the sporulation, germination and pathogenicity of Botrytis cinerea. Phytopathology, 68, 195–198.

    Article  CAS  Google Scholar 

  • Kuprianoff, J. (1953). The use of ozone in cold storage of fuits. Zeitschrift Kaltetechnik, 10, 1–9.

    Google Scholar 

  • Lewis, L., Zhuang, H., Payne, F. A., & Barth, M. M. (1996). Beta-carotene content and color assessment in ozone-treated broccoli florets during modified atmosphere packaging. Institute of Food Technologists annual meeting, book of abstracts (pp. 99).

  • Liew, C. L., & Prange, R. K. (1994). Effect of ozone and storage temperature on post-harvest diseases and physiology of carrots (Daucus carota L.). Journal of the American Society for Horticultural Science, 119, 563–567.

    CAS  Google Scholar 

  • Mahfoudh, A., Barbeau, J., Moisan, M., Leduc, A., & Seguin, J. (2010). Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Applied Surface Science, 256, 3063–3072.

    Article  CAS  Google Scholar 

  • Mahfoudh, A., Moisan, M., Seguin, J., Barbeau, J., Kabouzi, Y., & Keroack, D. (2010). Inactivation of vegetative and sporulated bacteria by dry gaseous ozone. Ozone Science and Engineering, 32(3), 180–198.

    Article  CAS  Google Scholar 

  • Ozkan, R., Smilanick, J. L., & Karabulut, O. A. (2011). Toxicity of ozone gas to conidia of Penicillium digitatum, Penicillium italicum and Botyris cinerea and control of gray mold on table grapes. Postharvest Biology and Technology, 60, 47–51.

    Article  CAS  Google Scholar 

  • Palou, L., Crisosto, C. H., Smilanick, J. L., Adaskaveg, J. E., & Zoffoli, J. P. (2002). Effects of continous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biology and Technology, 24, 39–48.

    Article  CAS  Google Scholar 

  • Perez, A. G., Sanz, C., Rios, J. J., Olias, R., & Olias, J. M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agricultural and Food Chemistry, 47, 1652–1656.

    Article  CAS  Google Scholar 

  • Ranasinghe, L., Jayawardena, B., & Abeywickrama, K. (2005). An integrated strategy to control postharvest decay of Embul banana by combining essential oils with modified atmosphere packaging. International Journal of Food Science and Technology, 40, 97–103.

    Article  CAS  Google Scholar 

  • Sapers, G. M. (1998). New technologies for safer produce-chemical based treatments and decontamination by washing. In Proceedings Conference on Fresh Fruit and Vegetables: Food Safety Challenges. Chicago: National Centre for Food Safety Technology. May 12–14.

    Google Scholar 

  • Sarig, P., Zahavi, T., Zutkhi, Y., Yannai, S., Lisker, N., & Ben-Arie, R. (1996). Ozone for control of postharvest decay of table grapes caused by Rhizopus stolonifer. Physiological and Molecular Plant Pathology, 48, 403–415.

    Article  CAS  Google Scholar 

  • Sepiah, M. (1993). Efficacy of propiconazole against fungi causing postharvest diseases on Eksotica papaya. In: Proceedings of the International Postharvest Conference on Handling Tropical Fruits, (pp. 53). Chiangmai, Thailand.

  • Shiota, H. (1991). Volatile components of pawpaw fruit (Asimia triloba). Journal of Agricultural and Food Chemistry, 39, 1631–1635.

    Article  CAS  Google Scholar 

  • Sivakumar, D., Hewarathgamagae, N. K., Wijeratnam, R. S. W., & Wijesundera, R. L. C. (2002). Effect of ammonium carbonate and sodium bicarbonate on anthracnose of papaya. Phytoparasitica, 30, 1–7.

    Google Scholar 

  • Skog, L. J., & Chu, C. L. (2001). Effect of ozone on qualities of fruits and vegetables in cold storage. Canadian Journal of Plant Science, 81, 773–778.

    Article  CAS  Google Scholar 

  • Smilanick, J. L. (2003). Postharvest use of ozone on citrus fruit (pp. 1–6). USA: Packinghouse Newsletter 199.

    Google Scholar 

  • Swadeshi, K., Miura, K., Ohtsuka, E., Ueda, T., Shinriki, N., & Ishizaki, K. (1986). Structure and sequence-specificity of ozone degradation of supercoiled plasmid DNA. Nucleic Acids Research, 14, 1159–1169.

    Article  Google Scholar 

  • Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R., & Srisukonth, C. (2002). Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. The Journal of General and Applied Microbiology, 48, 193–199.

    Article  CAS  Google Scholar 

  • Tzortzakis, N. G., Singleton, I., & Barnes, J. D. (2007). Deployment of low level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biology and Technology, 43, 261–270.

    Article  CAS  Google Scholar 

  • Tzortzakis, N. G., Singleton, I., & Barnes, J. D. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47, 1–9.

    Article  CAS  Google Scholar 

  • United States Food and Drug Administration (US-FDA). (1997). Substances generally recognized as safe, proposed rule. Federal Register, 62, 18937–18964.

    Google Scholar 

  • Young, S. B., & Setlow, P. (2004). Mechanism of Bacillus subtilis spore resistance to and killing by aqueous ozone. Journal of Applied Microbiology, 96, 1133–1142. B.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank MedKlinn International Sdn. Bhd. for providing financial and technical support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, M.K., Kazi, F.K., Forney, C.F. et al. Effect of Gaseous Ozone on Papaya Anthracnose. Food Bioprocess Technol 6, 2996–3005 (2013). https://doi.org/10.1007/s11947-012-1013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-1013-4

Keywords

Navigation