Skip to main content
Log in

Determining Shelf Life of Ready-to-Eat Macaroni and Cheese in High Barrier and Oxygen Scavenger Packaging Sterilized via Microwave-Assisted Thermal Sterilization

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ready-to-eat macaroni and cheese filled in novel oxygen scavenger and metal oxide–coated high-barrier polymer packages were processed in pilot scale 915-MHz microwave-assisted thermal sterilization system (MATS). Also, aluminum foil packages were processed in Allpax retort system to compare packaging performance. Physicochemical and sensory attributes of macaroni and cheese packaged in different oxygen and water vapor transmission rates were evaluated and stored for 6 months at 37.8 °C. Findings showed oxygen transmission rate (OTR) increase by 2–7 times and water vapor transmission rate (WVTR) increase by 2.5–24 times after MATS processing. OTR of polymeric packaging had no significant effect on vitamin A and vitamin E, shear force, and food color. Comparable results between polymeric and aluminum foil packaging were observed throughout the shelf life. This indicates that oxygen scavenger and high-barrier packaging with OTRs ~ 0.03–0.34 cc/m2 day and WVTRs ~ 0.62–7.19 g/m2 day can be used for ready-to-eat meals with extended shelf life for soldiers and astronauts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Ghamdi, S., Rasco, B., Tang, J., Barbosa-Cánovas, G. V., & Sablani, S. S. (2019). Role of package headspace on multilayer films subjected to high hydrostatic pressure. Packaging Technology and Science, 32(5), 247–257.

    Article  CAS  Google Scholar 

  • Anderson, J. S., & Sunderland, R. (2002). Effect of extruder moisture and dryer processing temperature on vitamin c and e and astaxanthin stability. Aquaculture, 207(1-2), 137–149.

    Article  CAS  Google Scholar 

  • Baisier, W. M., & Labuza, T. P. (1992). Maillard browning kinetics in a liquid model system. Journal of Agricultural and Food Chemistry, 40(5), 707–713.

    Article  CAS  Google Scholar 

  • Bhunia, K., Zhang, H., Liu, F., Rasco, B., Tang, J., & Sablani, S. S. (2016). Morphological changes in multilayer polymeric films induced after microwave-assisted pasteurization. Innovative Food Science & Emerging Technologies, 38, 124–130.

    Article  CAS  Google Scholar 

  • Bhunia, K., Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2017). Oxidation–reduction potential and lipid oxidation in ready-to-eat blue mussels in red sauce: criteria for package design. Journal of the Science of Food and Agriculture, 97(1), 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, E. R., Tang, J., Sablani, S. S., & Barbosa-Cánovas, G. V. (2017). Thermal pasteurization process evaluation using mashed potato model food with Maillard reaction products. LWT- Food Science and Technology, 82, 454–463.

    Article  CAS  Google Scholar 

  • Cardello, A. V., Schutz, H. G., & Lesher, L. L. (2007). Consumer perceptions of foods processed by innovative and emerging technologies: a conjoint analytic study. Innovative Food Science & Emerging Technologies, 8(1), 73–83.

    Article  Google Scholar 

  • Carini, E., Curti, E., Littardi, P., Luzzini, M., & Vittadini, E. (2013). Water dynamics of ready to eat shelf stable pasta meals during storage. Innovative Food Science & Emerging Technologies, 17, 163–168.

    Article  CAS  Google Scholar 

  • Catauro, P. M., & Perchonok, M. H. (2012). Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. Journal of Food Science, 77(1), S29–S39.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, M., Perchonok, M., & Douglas, G. L. (2017). Initial assessment of the nutritional quality of the space food system over three years of ambient storage. npj Microgravity, 3(1), 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan, S., Varney, C., Barbosa-Cánovas, G. V., Tang, J., Selim, F., & Sablani, S. S. (2014). The impact of microwave-assisted thermal sterilization on the morphology, free volume, and gas barrier properties of multilayer polymeric films. Journal of Applied Polymer Science, 131(12), 40376, 1–8.

  • Diantom, A., Carini, E., Curti, E., Cassotta, F., D’Alessandro, A., & Vittadini, E. (2016). Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta. Food Chemistry, 195, 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Favaro, R. M., Ferreira, J. F., Desai, I. D., & de Oliveira, J. D. (1991). Studies on fortification of refined soybean oil with all-trans-retinyl palmitate in Brazil: stability during cooking and storage. Journal of Food Composition and Analysis, 4(3), 237–244.

    Article  CAS  Google Scholar 

  • Frankel, E. N. (2012). Lipid oxidation. 2nd Edition: Cambridge, UK: Woodhead Publishing Limited.

  • Holdsworth, S. D., Simpson, R., & Barbosa-Cánovas, G. V. (2008). Thermal processing of packaged foods (Vol. 284). New York: Springer.

  • Johnson, D. R., Inchingolo, R., & Decker, E. A. (2018). The ability of oxygen scavenging packaging to inhibit vitamin degradation and lipid oxidation in fish oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 47, 467–475.

    Article  CAS  Google Scholar 

  • Joyner, H. S., Jones, K. E., & Rasco, B. A. (2016). Microwave Pasteurization of Cooked Pasta: effect of process parameters on texture and quality for heat-and-eat and ready-to-eat meals. Journal of Food Science, 81(6), E1447–E1456.

    Article  CAS  Google Scholar 

  • Kristensen, D., Hansen, E., Arndal, A., Trinderup, R. A., & Skibsted, L. H. (2001). Influence of light and temperature on the colour and oxidative stability of processed cheese. International Dairy Journal, 11(10), 837–843.

    Article  CAS  Google Scholar 

  • Ling, B., Tang, J., Kong, F., Mitcham, E., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology, 8(2), 343–358.

    Article  CAS  Google Scholar 

  • Lopez-Cervantes, J., Sanchez-Machado, D., & Rios-Vazquez, N. (2006). High-performance liquid chromatography method for the simultaneous quantification of retinol, α-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A, 1105(1-2), 135–139.

    Article  CAS  PubMed  Google Scholar 

  • Mokwena, K. K., Tang, J., Dunne, C. P., Yang, T. C., & Chow, E. (2009). Oxygen transmission of multilayer EVOH films after microwave sterilization. Journal of Food Engineering, 92(3), 291–296.

    Article  CAS  Google Scholar 

  • Pascall, M. A., & Han, J. H. (2018). Packaging for nonthermal processing of food. 2nd Edition: Hoboken, NJ: Wiley-Blackwell.

  • Perchonok, M. H., Cooper, M. R., & Catauro, P. M. (2012). Mission to Mars: food production and processing for the final frontier. Annual Review of Food Science and Technology, 3(1), 311–330.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, G. L. (2005). Food packaging: principles and practice. 2nd Edition: Boca Raton, FL: CRC Press.

  • Seybold, C., Fröhlich, K., Bitsch, R., Otto, K., & Böhm, V. (2004). Changes in contents of carotenoids and vitamin E during tomato processing. Journal of Agricultural and Food Chemistry, 52(23), 7005–7010.

    Article  CAS  PubMed  Google Scholar 

  • Shumaker, E., & Wendorff, W. (1998). Factors affecting pink discoloration in annatto-colored pasteurized process cheese. Journal of Food Science, 63(5), 828–831.

    Article  CAS  Google Scholar 

  • Sissons, M. J., Schlichting, L. M., Egan, N., Aarts, W. A., Harden, S., & Marchylo, B. A. (2008). A standardized method for the instrumental determination of cooked spaghetti firmness. Cereal Chemistry, 85(3), 440–444.

    Article  CAS  Google Scholar 

  • Sonar, C., Paccola, C., Al-Ghamdi, S., Rasco, B., Tang, J., & Sablani, S. S. (2019). Stability of color, β-carotene, and ascorbic acid in thermally pasteurized carrot puree to the storage temperature and gas barrier properties of selected packaging films. Journal of Food Process Engineering, 42(4), e13074, 1–2

  • Tang, J. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776–E1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Boekel, M. A. (2008). Kinetic modeling of food quality: a critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158.

    Article  Google Scholar 

  • Wang, J., Tang, J., Rasco, B., Sablani, S. S., Ovissipour, M., & Qu, Z. (2018). Kinetics of quality changes of shrimp (Litopenaeus setiferus) during pasteurization. Food and Bioprocess Technology, 11(5), 1027–1038.

    Article  Google Scholar 

  • Wilson, N., & Shah, N. (2007). Microencapsulation of vitamins. ASEAN Food Journal, 14(1), 1.

    Google Scholar 

  • Zhang, H., Bhunia, K., Kuang, P., Tang, J., Rasco, B., Mattinson, D. S., & Sablani, S. S. (2016a). Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato. Food and Bioprocess Technology, 9(2), 341–351.

    Article  CAS  Google Scholar 

  • Zhang, H., Tang, Z. W., Rasco, B., Tang, J., & Sablani, S. S. (2016b). Shelf-life modeling of microwave-assisted thermal sterilized mashed potato in polymeric pouches of different gas barrier properties. Journal of Food Engineering, 183, 65–73.

    Article  CAS  Google Scholar 

  • Zhang, H., Bhunia, K., Munoz, N., Li, L., Dolgovskij, M., Rasco, B., Tang, J., & Sablani, S. S. (2017). Linking morphology changes to barrier properties of polymeric packaging for microwave-assisted thermal sterilized food. Journal of Applied Polymer Science, 134(44), 45481, 1–10.

  • Zhang, H., Patel, J., Bhunia, K., Al-Ghamdi, S., Sonar, C., Ross, C., et al. (2019). Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life, (21), 100324, 1–9.

Download references

Acknowledgments

The authors would like to thank Dr. Zhongwei Tang for his technical help. In addition, the authors would like to thank Kuraray America, Inc. (Houston, TX, USA), Toppan Printing Co, LTD. (Japan) and Mitsubishi Chemical Corporation (Japan) for providing the packaging materials.

Funding

This work was supported by the USDA National Institute of Food and Agriculture Research grants #2016-67017-24597 and #2016-68003-24840, and Hatch project #1016366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sablani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J., Al-Ghamdi, S., Zhang, H. et al. Determining Shelf Life of Ready-to-Eat Macaroni and Cheese in High Barrier and Oxygen Scavenger Packaging Sterilized via Microwave-Assisted Thermal Sterilization. Food Bioprocess Technol 12, 1516–1526 (2019). https://doi.org/10.1007/s11947-019-02310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02310-1

Keywords

Navigation