Skip to main content
Log in

Effect of Rice Bran Addition on Physical Properties of Antimicrobial Biocomposite Films Based on Starch

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The increase in consumer requirements for safe and high-quality food has promoted the development of active and edible packaging materials based on biopolymers. In this study, composite tapioca starch films by addition of processed rice bran (PRB) microparticles, containing or not the natural antimicrobials natamycin and nisin, were studied in relation to their physicochemical properties and antimicrobial activity. It was observed that the presence of PRB addition (0.1–0.3% w/w) increased yellowness proportionally to fiber content in films with or without antimicrobials but did not influence on thickness and water vapor permeability. Films with 0.2% PRB allowed the highest increase of tensile strength and strain at break and reduced the solubility in water, showing the optimal compatibility between PRB and starch matrix containing or not antimicrobials. Analysis by FTIR also suggested a good compatibility between filler and matrix through hydrophilic groups. Additionally, the analyzed composite films allowed the diffusion of the natural preservatives verified through zones of inhibition formed in the halo test against Saccharomyces cerevisiae and Listeria innocua. Consequently, the developed biocomposites can be used as an active packaging for food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article.

Code Availability

The software InfoStat version 2020 was used for statistical analysis (Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina).

References

  • Alzate, P., Miramont, S., Flores, S., & Gerschenson, L. (2017). Effect of the potassium sorbate and carvacrol addition on the properties and antimicrobial activity of tapioca starch – Hydroxypropyl methylcellulose edible films. Starch/Staerke, 69(5–6), 1–9. https://doi.org/10.1002/star.201600261

    Article  CAS  Google Scholar 

  • Ambigaipalan, P., Hoover, R., Donner, E., & Liu, Q. (2013). Retrogradation characteristics of pulse starches. Food Research International, 54(1), 203–212. https://doi.org/10.1016/j.foodres.2013.06.012

    Article  CAS  Google Scholar 

  • Angles, M. N., & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33(22), 8344–8353. https://doi.org/10.1021/ma0008701

  • AOAC 991.42. (1998). Official methods of analysis 15 Association of Official Analytical Chemists.

  • AOAC 934.01, 942.05 & 960.39. (2005). Official methods of analysis 18 Association of Official Analytical Chemists.

  • ASTM D1925. (1988). Standard Test Method for Yellowness Index of Plastics. Philadelphia: American Society for Testing and Materials.

  • ASTM E96-00. (2000). Standard test method for water vapour transmission of materials. American Society for Testing and Materials, Philadelphia (2000).

  • Avérous, L., & Halley, P. J. (2009). Biocomposites based on plasticized starch. Biofuels, Bioproducts and Biorefining, 3(3), 329–343. https://doi.org/10.1002/bbb.135

    Article  CAS  Google Scholar 

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6(9), 2419–2428.

    Article  CAS  Google Scholar 

  • Bernhardt, D. C., Pérez, C. D., Fissore, E. N., & De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13–22.

    Article  CAS  Google Scholar 

  • Berti, S., Flores, S. K., & Jagus, R. J. (2020). Improvement of the microbiological quality of Argentinian Port Salut cheese by applying starch‐based films and coatings reinforced with rice bran and containing natural antimicrobials. Journal of Food Processing and Preservation, e14827. https://doi.org/10.1111/jfpp.14827

  • Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543–555. https://doi.org/10.1016/j.carbpol.2014.04.075

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira, M., Lima, A., Souza, B., Teixeira, J., Moreira, R., & Vicente, A. (2009). Functional polysaccharides as edible coatings for cheese. Journal of Agricultural and Food Chemistry, 57(4), 1456–1462. https://doi.org/10.1021/jf802726d

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Liu, C., Chang, P., Cao, X., & Anderson, D. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fiber: Effect of hydrolysis time. Carbohydrate Polymers, 76(4), 607–615. https://doi.org/10.1016/j.carbpol.2008.11.030

    Article  CAS  Google Scholar 

  • Chen, Z., Xu, Y., & Shivkumar, S. (2018). Microstructure and tensile properties of various varieties of rice husk. J. Sci. Food Agric, 98, 1061–1070. https://doi.org/10.1002/jsfa.8556

    Article  CAS  PubMed  Google Scholar 

  • Costa, M. J., Maciel, L. C., Teixeira, J. A., Vicente, A. A., & Cerqueira, M. A. (2018). Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International, 107, 84–92. https://doi.org/10.1016/j.foodres.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  • Daybelis, I., Valdés, F., Silvia, D., Baños, B., Dayvis, I., & Valdés, F. (2015). Películas y recubrimientos comestibles: una alternativa favorable en la conservación poscosecha de frutas y hortalizas. 24(3), 52–57. ISSN 2071-0054

  • Edhirej, A., Sapuan, S., Jawaid, M., & Zahari, N. (2017). Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. International Journal of Biological Macromolecules, 101, 75–83. https://doi.org/10.1016/j.ijbiomac.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  • Famá, L., Gerschenson, L., & Goyanes, S. (2009). Starch-vegetable fibre composites to protect food products. Carbohydrate polymers, 75(2), 230–235. https://doi.org/10.1016/j.carbpol.2008.06.018

    Article  CAS  Google Scholar 

  • Flores, S., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate. Food Research International, 40(2), 257–265. https://doi.org/10.1016/j.foodres.2006.02.004

    Article  CAS  Google Scholar 

  • Fu, Z., Wu, M., Han, X., & Xu, L. (2017). Effect of okara dietary fiber on the properties of starch-based films. Starch/Staerke, 69(11–12), 1–7. https://doi.org/10.1002/star.201700053

    Article  CAS  Google Scholar 

  • Ge, L., Zhu, M., Xu, Y., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food and Bioprocess Technology, 10(9), 1727–1736.

    Article  CAS  Google Scholar 

  • Gilfillan, W., Nguyen, D., Sopade, P., & Doherty, W. (2012). Preparation and characterisation of composites from starch and sugar cane fiber. Industrial Crops and Products, 40, 45–54. https://doi.org/10.1016/j.indcrop.2012.02.036

    Article  CAS  Google Scholar 

  • Gutiérrez, T., & Alvarez, V. (2017). Cellulosic materials as natural fillers in starch-containing matrix-based films: A review. Polymer Bulletin, 74(6), 2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310. https://doi.org/10.1016/j.foodhyd.2011.06.009

    Article  CAS  Google Scholar 

  • Kaewtatip, K., & Thongmee, J. (2012). Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Materials and Design, 40, 314–318. https://doi.org/10.1016/j.matdes.2012.03.053ISSN0261-3069

    Article  CAS  Google Scholar 

  • Kalpanadevi, C., Singh, V., & Subramanian, R. (2018). Influence of milling on the nutritional composition of bran from different rice varieties. Journal of food science and technology, 55(6), 2259–2269. https://doi.org/10.1007/s13197-018-3143-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kargarzadeh, H., Johar, N., & Ahmad, I. (2017). Starch biocomposite film reinforced by multiscale rice husk fiber. Composites Science and Technology, 151, 147–155. https://doi.org/10.1016/j.compscitech.2017.08.018

    Article  CAS  Google Scholar 

  • Kuciel, S., & Liber-Knec, A. (2009). Biocomposites on the base of thermoplastic starch filled by wood and kenaf fiber. Journal of Biobased Materials and Bioenergy, 3(3), 269–274. https://doi.org/10.1166/jbmb.2009.1026

    Article  CAS  Google Scholar 

  • Lafargue, D., Lourdin, D., & Doublier, J. (2007). Film-forming properties of a modified starch/κ-carrageenan mixture in relation to its rheological behaviour. Carbohydrate Polymers, 70(1), 101–111. https://doi.org/10.1016/j.carbpol.2007.03.019

    Article  CAS  Google Scholar 

  • Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  Google Scholar 

  • Ludueña, L., Vázquez, A., & Alvarez, V. (2012). Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydrate Polymers, 87(1), 411–421. https://doi.org/10.1016/j.carbpol.2011.07.064

    Article  CAS  Google Scholar 

  • Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048

    Article  CAS  PubMed  Google Scholar 

  • Moro, T. M., Ascheri, J. L., Ortiz, J. A., Carvalho, C. W., & Meléndez-Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology, 10(10), 1798–1808.

    Article  CAS  Google Scholar 

  • Ollé Resa, C. P., Jagus, R. J., & Gerschenson, L. N. (2021). Do fillers improve the physicochemical properties of antimicrobial tapioca starch edible films?. Journal of Food Safety, e12880. https://doi.org/10.1111/jfs.12880

  • Ollé Resa, C., Jagus, R., & Gerschenson, L. (2014). Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Materials Science and Engineering C, 40, 281–287. https://doi.org/10.1016/j.msec.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  • Pérez, P. F., Resa, C. P. O., Gerschenson, L. N., & Jagus, R. J. (2021). Addition of zein for the improvement of physicochemical properties of antimicrobial tapioca starch edible film. Food and Bioprocess Technology, 1-10.

  • Pintado, C. M., Ferreira, M. A., & Sousa, I. (2010). Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control, 21(3), 240–246. https://doi.org/10.1016/j.foodcont.2009.05.017

    Article  CAS  Google Scholar 

  • Pinto, M. S., de Carvalho, A. F., Pires, A. C. D. S., Campos Souza, A. A., Fonseca da Silva, P. H., Sobral, D., & de Lima Santos, A. (2011). The effects of nisin on Staphylococcus aureus count and the physicochemical properties of Traditional Minas Serro cheese. International Dairy Journal, 21(2), 90–96. https://doi.org/10.1016/j.idairyj.2010.08.001

    Article  CAS  Google Scholar 

  • Prachayawarakorn, J., Chaiwatyothin, S., Mueangta, S., & Hanchana, A. (2013). Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials and Design, 47, 309–315. https://doi.org/10.1016/j.matdes.2012.12.012

    Article  CAS  Google Scholar 

  • Resa, C. P. O., Gerschenson, L. N., & Jagus, R. J. (2014). Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and Port Salut cheese. Food Control, 44, 146–151. https://doi.org/10.1016/j.foodcont.2014.03.054

    Article  CAS  Google Scholar 

  • del C Robles-Flores, G., Abud-Archila, M., Ventura-Canseco, L. M. C., Meza-Gordillo, R., Grajales-Lagunes, A., Ruiz-Cabrera, M. A., & Gutiérrez-Miceli, F. A. (2018). Development and evaluation of a film and edible coating obtained from the Cajanus cajan seed applied to fresh strawberry fruit. Food and Bioprocess Technology, 11(12), 2172–2181.

    Article  CAS  Google Scholar 

  • Somboonsub, S., & Thawornchinsombut, S. (2015). Effect of rice bran protein and cassava starch ratio on physical, mechanical and structural properties of rice bran protein-cassava starch composite film. Journal of Food Science and Agricultural Technology, 1(1), 63–67. ISSN: 2408-1736.

  • Shia, D., & Hui, C. Y. (1998). An interface model for the prediction of Young’s modulus of layered siIicate-elastomer nanocomposites. Polymer composites, 19, 608–617. https://doi.org/10.1002/pc.10134

    Article  CAS  Google Scholar 

  • Shiroodi, S. G., Nesaei, S., Ovissipour, M., Al-Qadiri, H. M., Rasco, B., & Sablani, S. (2016). Biodegradable polymeric films incorporated with nisin: Characterization and efficiency against Listeria monocytogenes. Food and Bioprocess Technology, 9(6), 958–969.

    Article  CAS  Google Scholar 

  • Toro-Márquez, L. A., Merino, D., & Gutiérrez, T. J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology, 11(11), 1955–1973.

    Article  Google Scholar 

  • Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769. https://doi.org/10.1016/j.foodres.2009.02.026

    Article  CAS  Google Scholar 

  • Versino, F., & García, M. A. (2014). Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops & Products, 58, 305–314. https://doi.org/10.1016/j.indcrop.2014.04.040

    Article  CAS  Google Scholar 

  • Vicentini, N. M., Dupuy, N., Leitzelman, M., Cereda, M. P., & Sobral, P. J. A. (2005). Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectroscopy Letters: An International Journal for Rapid Communication, 38(6), 749–767. https://doi.org/10.1080/00387010500316080

    Article  CAS  Google Scholar 

  • Wan, J., Liu, C., Liu, W., Tu, Z., Wu, W., & Tan, H. (2015). Optimization of instant edible films based on dietary fiber processed with dynamic high pressure microfluidization for barrier properties and water solubility. LWT - Food Science and Technology, 60(1), 603–608. https://doi.org/10.1016/j.lwt.2014.07.032

    Article  CAS  Google Scholar 

  • Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143

    Article  CAS  Google Scholar 

  • Zainuddin, S., Ahmad, I., Kargarzadeh, H., Abdullah, I., & Dufresne, A. (2013). Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers, 92(2), 2299–2305. https://doi.org/10.1016/j.carbpol.2012.11.106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank DSM (Argentina) and Cooperativa Arrocera Villa Elisa (Entre Ríos, Argentina).

Funding

This study was financially supported by Universidad de Buenos Aires (UBACyT 2002017010063BA, 2017–2020, and UBACyT 20020130100550BA, 2014–2017), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015 No. 2742 and PICT 2015 No. 2109).

Author information

Authors and Affiliations

Authors

Contributions

Sofía Berti: investigation, methodology, formal analysis, data curation, validation, writing—original draft, visualization. Rosa J Jagus: conceptualization, methodology, resources, investigation, formal analysis, validation, visualization, supervision, project administration, funding acquisition, writing—original draft, writing—review and editing. Silvia K Flores: conceptualization, methodology, resources, formal analysis, investigation, visualization, supervision, project administration, funding acquisition, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Sofía Berti.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, S., Jagus, R.J. & Flores, S.K. Effect of Rice Bran Addition on Physical Properties of Antimicrobial Biocomposite Films Based on Starch. Food Bioprocess Technol 14, 1700–1711 (2021). https://doi.org/10.1007/s11947-021-02669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02669-0

Keywords

Navigation