Skip to main content
Log in

Evaluation of linear and nonlinear rheology of microfibrillated cellulose

  • Original Research
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Microfibrillated cellulose (MFC) is a noble class of material that has drawn considerable attention due to its numerous properties such as mechanical robustness, high aspect ratio, lower coefficient of thermal expansion, water retention ability, barrier properties to oxygen, compatibility with biomaterials, biodegradability, large surface area and interesting rheology. This present work deals with the rheology of MFC suspension in water. The effect of temperature on the concentration of the suspension of MFC was studied. Three regimes of MFC were observed for the shear rate lying in the range of 0.01–1000 s−1, supported by a buildup of a network of hydroxyl groups present on the surface, resulting in shear thinning, shear thickening, and shear thinning regions, respectively. An increase in the concentration of MFC, increased viscosity, and the dominance of storage modulus were observed. A high value of storage modulus indicates a higher degree of crosslinking of fibrils. The experimental data were well fitted by using the Ostwald-de Waele power law model. The results suggested that an increase in the temperature did not have any significant effect on the MFC rheology in the temperature range of 25–60°C. The Gaussian process regression model was used to determine the performance parameters. Dynamic oscillatory measurements were performed to validate the viscoelastic behavior.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Choi, K, Gao, C, Nam, J, Choi, H, "Cellulose-Based Smart Fluids Under Applied Electric Fields." Materials, 10 (9) 1060 (2017)

    Article  Google Scholar 

  2. Moon, RJ, Martini, A, Nairn, J, Simonsen, J, Youngblood, J, "Cellulose Nanomaterials Review: Structure, Properties, and Nanocomposites." Chem. Soc. Rev., 40 (7) 3941–3994 (2011)

    Article  CAS  Google Scholar 

  3. La Mantia, FP, Morreale, M, "Green Composites: A Brief Review." Compos. Part A Appl. Sci. Manuf., 42 (6) 579–588 (2011)

    Article  Google Scholar 

  4. Peng, BL, Dhar, N, Liu, HL, Tam, KC, "Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: A Nanotechnology Perspective." Canad. J. Eng., 89 (5) 1191–1206 (2011)

    Article  CAS  Google Scholar 

  5. Ioelovich, M, "Cellulose as a Nanostructured Polymer: A Short Review." BioResources, 3 (4) 1403–1418 (2008)

    Article  Google Scholar 

  6. Turbak, AF, Snyder, FW, Sandberg, KR, "Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential." J. Appl. Polymer Sci. Appl. Polymer Symp., ITT Rayonier Inc., Shelton, WA, United States, January 1983

  7. Sakurada, I, Nukushina, Y, Ito, T, "Experimental Determination of the Elastic Modulus of Crystalline Regions in Oriented Polymers." J. Polym. Sci., 57 (165) 651–660 (1962)

    Article  CAS  Google Scholar 

  8. Nishino, T, Matsuda, I, Hirao, K, "All-Cellulose Composite." Macromolecules, 37 (20) 7683–7687 (2004)

    Article  CAS  Google Scholar 

  9. Agoda-Tandjawa, G, Durand, S, Berot, S, Blassel, C, Gaillard, C, Garnier, C, Doublier, JL, "Rheological Characterization of Microfibrillated Cellulose Suspensions After Freezing." Carbohydrate Polym., 80 (3) 677–686 (2010)

    Article  CAS  Google Scholar 

  10. Pääkkö, M, Ankerfors, M, Kosonen, H, Nykänen, A, Ahola, S, Österberg, M, Lindström, T, "Enzymatic Hydrolysis Combined With Mechanical Shearing And High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels." Biomacromolecules, 8 (6) 1934–1941 (2007)

    Article  Google Scholar 

  11. Lavoine, N, Desloges, I, Dufresne, A, Bras, J, "Microfibrillated Cellulose–Its Barrier Properties and Applications in Cellulosic Materials: A Review." Carbohydrate Polym., 90 (2) 735–764 (2012)

    Article  CAS  Google Scholar 

  12. Okahisa, Y, Yoshida, A, Miyaguchi, S, Yano, H, "Optically Transparent Wood–Cellulose Nanocomposite as a Base Substrate for Flexible Organic Light-Emitting Diode Displays." Compos. Sci. Technol., 69 (11–12) 1958–1961 (2009)

    Article  CAS  Google Scholar 

  13. Zhang, J, Fu, J, Song, X, Jiang, G, Zarrin, H, Xu, P, Chen, Z, "Laminated Cross-Linked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc-Air Batteries." Adv. Energy Mater., 6 (14) 1600476 (2016)

    Article  Google Scholar 

  14. Siró, I, Plackett, D, "Microfibrillated Cellulose and New Nanocomposite Materials: A Review." Cellulose, 17 (3) 459–494 (2010)

    Article  Google Scholar 

  15. Hamada, H, Tahara, K, Uchida, A, ”The Effects of Nano-Fibrillated Cellulose as a Coating Agent for Screen Printing.” TAPPI Advanced Coating Fundamentals Symposium, Atlanta, Georgia, September 2012

  16. Shatkin, JA, Wegner, TH, Bilek, ET, Cowie, J, "Market Projections of Cellulose Nanomaterial-Enabled Products-Part 1: Applications." Tappi J., 13 (5) 9–16 (2014)

    Article  CAS  Google Scholar 

  17. Peters, SJ, Rushing, TS, Landis, EN, Cummins, TK, "Nanocellulose and Microcellulose Fibers for Concrete." Transp. Res. Record, 2142 (1) 25–28 (2010)

    Article  CAS  Google Scholar 

  18. Ioelovich, M, Figovsky, O, "Nano-Cellulose as Promising Bio Carrier." Adv. Mater. Res., 47 1286–1289 (2008)

    Article  Google Scholar 

  19. Serpa, A, Velásquez-Cock, J, Gañán, P, Castro, C, Vélez, L, Zuluaga, R, "Vegetable Nanocellulose in Food Science: A Review." Food Hydrocoll., 57 178–186 (2016)

    Article  Google Scholar 

  20. Soury, E, Behravesh, AH, Rizvi, GM, Jam, NJ, "Rheological Investigation of Wood-Polypropylene Composites in Rotational Plate Rheometer." J. Polym. Environ., 20 (4) 998–1006 (2012)

    Article  CAS  Google Scholar 

  21. Oguzlu, H, Danumah, C, Boluk, Y, "The Role of Dilute and Semi-Dilute Cellulose Nanocrystal (CNC) Suspensions on the Rheology of Carboxymethyl Cellulose (CMC) Solutions." Canad. J. Chem. Eng., 94 1841–1847 (2016)

    Article  CAS  Google Scholar 

  22. Iotti, M, Gregersen, ØW, Moe, S, Lenes, M, "Rheological Studies of Microfibrillar Cellulose Water Dispersions." J. Polym. Environ., 19 (1) 137–145 (2011)

    Article  CAS  Google Scholar 

  23. Dimic-Misic, K, Puisto, A, Gane, P, Nieminen, K, Alava, M, Paltakari, J, Maloney, T, "The Role of MFC/NFC Swelling in the Rheological Behavior and Dewatering of High Consistency Furnishes." Cellulose, 20 (6) 2847–2861 (2013)

    Article  CAS  Google Scholar 

  24. Saarikoski, E, Saarinen, T, Salmela, J, Seppälä, J, "Flocculated Flow of Microfibrillated Cellulose Water Suspensions: An Imaging Approach for Characterisation of Rheological Behaviour." Cellulose, 19 (3) 647–659 (2012)

    Article  CAS  Google Scholar 

  25. Karppinen, A, Saarinen, T, Salmela, J, Laukkanen, A, Nuopponen, M, Seppälä, J, "Flocculation of Microfibrillated Cellulose in Shear Flow." Cellulose, 19 (8) 1807–1819 (2012)

    Article  CAS  Google Scholar 

  26. Jowkarderis, L, van de Ven, TG, "Intrinsic Viscosity of Aqueous Suspensions of Cellulose Nanofibrils." Cellulose, 21 (4) 2511–2517 (2014)

    Article  CAS  Google Scholar 

  27. Lasseuguette, E, Roux, D, Nishiyama, Y, "Rheological Properties of Microfibrillar Suspension of TEMPO-Oxidized Pulp." Cellulose, 15 (3) 425–433 (2008)

    Article  CAS  Google Scholar 

  28. Rasmussen, CE, Williams, CKI, Gaussian Processes for Machine Learning. The MIT Press, Cambridge, Massachusetts, London (2006)

  29. Henriksson, M, Henriksson, G, Berglund, LA, Lindström, T, "An Environmentally Friendly Method for Enzyme-Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers." Europ. Polym. J., 43 (8) 3434–4344 (2007)

    Article  CAS  Google Scholar 

  30. Salajkova, M, Valentini, L, Zhou, Q, Berglund, LA, "Tough Nanopaper Structures Based on Cellulose Nanofibers and Carbon Nanotubes." Compos. Sci. Technol., 87 103–110 (2013)

    Article  CAS  Google Scholar 

  31. Eronen, P, Osterberg, M, Heikkinen, S, Tenkanen, M, Laine, J, "Interactions of Structurally Different Hemicelluloses with Nanofibrillar Cellulose." Carbohydrate Polym., 86 (3) 1281–1290 (2011)

    Article  CAS  Google Scholar 

  32. Lu, J, Askeland, P, Drzal, L, "Surface Modification of Microfibrillated Cellulose for Epoxy Composite Applications." Polymer, 49 (5) 1285–1296 (2008)

    Article  CAS  Google Scholar 

  33. Choi, K, Nam, JD, Kwon, SH, Choi, HJ, Islam, MS, Kao, N, "Microfibrillated Cellulose Suspension and Its Electrorheology." Polymers, 11 (12) 2119 (2019)

    Article  CAS  Google Scholar 

  34. Coates, J, “Interpretation of Infrared Spectra.” In: Meyers RA, McKelvy ML (eds.) A Practical Approach. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Inc., New Jersey (2006)

    Google Scholar 

  35. Korhonen, MHJ, Sorvari, A, Saarinen, T, Seppälä, J, Laine, J, "Deflocculation of Cellulosic Suspensions with Anionic High Molecular Weight Polyelectrolytes." BioResources, 9 (2) 3550–3570 (2014)

    Google Scholar 

  36. Subramanian, R, Hiltunen, E, Gane, PAC, “Potential Use of Micro- and Nanofibrillated Cellulose Composites Exemplified by Paper.” In: Kalia S, Kaith B, Kaur I (eds.) Cellulose Fibers: Bio- and Nano-Polymer Composites, pp. 121–152. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  37. Winter, HH, "Three Views of Viscoelasticity for Cox-Merz Materials." Rheologica Acta, 48 241–243 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), for providing facilities to carry out the relevant experiments. The authors would also like to extend gratitude to TEQIP II for providing Anton Paar MCR 102 Rheometer for conducting specific experiments. The authors sincerely thank Prof. Abhijit P. Deshpande, IIT Madras, Prof. Ajay Mandal, Prof. Indra Mani Mishra, and Dr. Vivek Shankar Pinnamaraju for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Yatirajula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, S., Yatirajula, S.K. & Saxena, V.K. Evaluation of linear and nonlinear rheology of microfibrillated cellulose. J Coat Technol Res 18, 1401–1411 (2021). https://doi.org/10.1007/s11998-021-00505-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00505-w

Keywords

Navigation