Skip to main content

Advertisement

Log in

Novel product design of tool for investigating formability with microstructural study of bio-material titanium grade-II thin foils

  • Technical Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Forming is the process in which deformation of the material takes place in a requisite die cavity without any failure. During this, bi-directional stretching and compression of the material takes place which results in defects necking, cracking and wrinkling. The challenges are different when same process is carried out at micro level with thin sheets below 100 microns. It has become imperative for many engineering fields to manufacture micro-sized components, due to growing miniaturization. It is also observed that the mechanical behavior of thin sheets differs greatly at the micro-level. Forming limit curve (FLC) is one way by which the formality of material can be assessed. The FLC can be plotted using three approaches—experimentally, empirically, and numerically. In this research, FLC is plotted experimentally for an ultra-thin Titanium sheet of 50 µm. A newly designed tool with hemispherical punch of 4 mm diameter was used for experimentation according to ASTM-2218-14 standard using samples of Uni-Axial, Intermediate Uni-Axial, Bi-Axial, Intermediate Bi-Axial, and Plane Strain paths to obtain limit strains. The objective of this research is to plot FLC with microstructural study to assess the behavior of Titanium Grade-II (TiG-II). For Numerical simulation M–K model was applied. The Numerical results and experimental results achieved are in good agreement. Micro structural study reveals phase identification and grain size assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Razali, A.R., Qin, Yi.: A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 53, 665–672 (2013). https://doi.org/10.1016/j.proeng.2013.02.086

    Article  Google Scholar 

  2. Jian, C., Krishnan, N., Wang, Z., Lu, H., Liu, W.K., Swanson, A.: Microforming: experimental investigation of the extrusion process for micro pins and its numerical simulation using RKEM. J. Manuf. Sci. Eng. 126(4), 642–652 (2005). https://doi.org/10.1115/1.1813468

    Article  Google Scholar 

  3. Leu, D.-K.: Modeling of size effect on tensile flow stress of sheet metal in microforming. J. Manuf. Sci. Eng. 131(1), 011001–011008 (2009). https://doi.org/10.1115/1.3039520

    Article  Google Scholar 

  4. Kim, G.-Y., Ni, J., Koç, M.: Modeling of the size effects on the behavior of metals in microscale deformation processes. J. Manuf. Sci. Eng. 129(3), 470 (2007). https://doi.org/10.1115/1.2714582

    Article  Google Scholar 

  5. Yin, H., Jiang, Z., Xie, H., Jia, F., Wang, X., Zhou, C.: Micro forming of metallic composites. Procedia Manuf. 15, 1429–1436 (2018). https://doi.org/10.1016/j.promfg.2018.07.338

    Article  Google Scholar 

  6. Laxman, H.V., Srivatsa, S.R.: Sheet metal forming processes—recent technological advances. Mater. Today Proc. 5(1), 2564–2574 (2018). https://doi.org/10.1016/j.matpr.2017.11.040.8

    Article  Google Scholar 

  7. Zhang, R., Shao, Z., Lin, J.: A review on modelling techniques for formability prediction of sheet metal forming. Int. J. Light. Mater. Manuf. 1(3), 115–125 (2018). https://doi.org/10.1016/j.ijlmm.2018.06.003

    Article  Google Scholar 

  8. Yasunori, S., Yasuda, K., Kaga, H.: Micro deep drawability of very thin sheet steels. J. Mater. Process. Technol. 113(1–3), 641–647 (2001). https://doi.org/10.1016/S0924-0136(01)00626-4

    Article  Google Scholar 

  9. Xu, Z.T., Peng, L.F., Fu, M.W., Lai, X.M.: Size effect affected formability of sheet metals in micro/meso scale plastic deformation: experiment and modeling. Int. J. Plast. 68, 34–54 (2015). https://doi.org/10.1016/j.ijplas.2014.11.002

    Article  Google Scholar 

  10. Lai, X.M., Fu, M.W., Peng, L.F.: Sheet metal meso- and microforming and their industrial applications. CRC Press Taylor, Boca Raton (2020)

    Google Scholar 

  11. Peng, L.F., Xu, Z.T., Fu, M.W., Lai, X.M.: Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria. Int. J. Mech. Sci. 120, 190–203 (2016)

    Article  Google Scholar 

  12. Michael, A., Scholting, M.E., Droog, J.M.M.: A new method for predicting Forming Limit Curves from mechanical properties, Tata Steel Research Development & Technology, Netherlands. J. Mater. Process. Technol. 213, 759–769 (2013)

    Article  Google Scholar 

  13. Wolfgang, B., Deng, Z., Papamantellos, K., Gusek, C.O.: A comparative study of the forming-limit diagram models for sheet steels. J. Mater. Process. Technol. 83(1–3), 223–230 (1998)

    Google Scholar 

  14. Peng, L., Xu, Z., Gao, Z., Fu, M.W.: A constitutive model for metal plastic deformation at micro/meso scale with consideration of grain orientation and its evolution. Int. J. Mech. Sci. 138–139, 74–85 (2018)

    Article  Google Scholar 

  15. Qiua, T.T., Houb, Y.K., Caoc, H.L.: Review of Research Progress on Size Effect in Micro-Forming, vol. 717, pp. 118–121 (2017) https://doi.org/10.4028/www.scientific.net/KEM.717.118

  16. Messner, A., Engel, U., Kals, R., Vollertsen, F.: Size effect in the FE-simulation of micro-forming processes. J. Mater. Process. Technol. 45(1–4), 371–376 (1994). https://doi.org/10.1016/0924-0136(94)90368-9

    Article  Google Scholar 

  17. Barbier, C., Thibaud, S., Richard, F., Picart, P.: Size effects on material behavior in microforming. Int. J. Mater. Form. 2, 625 (2009). https://doi.org/10.1007/s12289-009-0563-0

    Article  Google Scholar 

  18. Wang, J.L., Fu, M.W., Ran, J.Q.: Analysis of size effect on flow-induced defect in micro-scaled forming process. Int. J. Adv. Manuf. Technol. 73, 1475–1484 (2014). https://doi.org/10.1007/s00170-014-5947-8

    Article  Google Scholar 

  19. Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Langdon, T.G.: The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng. A257, 328 (1998)

    Article  Google Scholar 

  20. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Progr. Mater. Sci. 54(3), 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  21. McKay, G.C., Mcnair, R., MacDonald, C., Grant, M.H.: Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials 17, 1339 (1996)

    Article  Google Scholar 

  22. Mashalkar, A., Kakandikar, G., Nandedkar, V.: Microforming analysis of ultra-thin brass foil. Mater. Manuf. Process. 34(13), 1509–1515 (2019). https://doi.org/10.1080/10426914.2019.1655158

    Article  Google Scholar 

  23. Patel, G., Kakandikar, G.M., Kulkarni, O.: Experimental and numerical investigations on forming limit curves in micro forming. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1793268

    Article  Google Scholar 

  24. Patel, G., Kakandikar, G.: Chapter seven - Investigations on effect of thickness and rolling direction of thin metal foil on forming limit curves in microforming process. In: Kumar, K., Paulo Davim, J. (eds.) Woodhead Publishing Reviews: Mechanical Engineering Series, Modern Manufacturing Processes, pp. 145–155. Woodhead Publishing, Sawston (2020). https://doi.org/10.1016/B978-0-12-819496-6.00007-5

    Chapter  Google Scholar 

  25. Swift, H.W.: Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1–18 (1952)

    Article  Google Scholar 

  26. Hill, R.: On discontinuous plastic stated, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1, 19–30 (1952)

    Article  MathSciNet  Google Scholar 

  27. Manopulo, N., Hora, P., Peters, P., Gorji, M., Barlat, F.: An extended Modified Maximum Force Criterion for the prediction of localized necking under non-proportional loading. Int. J. Plast. 75, 189–203 (2015)

    Article  Google Scholar 

  28. Marciniak, Z., Kuczyński, K.: Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9, 609–620 (1967)

    Article  MATH  Google Scholar 

  29. Li, X.-Q., Dong, H.-R., Wang, H.-B., Guo, G.-Q., Li, D.-S.: Effect of strain rate difference between inside and outside groove in M−K model on prediction of forming limit curve of Ti6Al4V at elevated temperatures. Trans. Nonferr. Met. Soc. China 30, 405–416 (2020)

    Article  Google Scholar 

  30. Mjali, K.V., Botes, A.: Microstructure and mechanical properties of laser and mechanically formed commercially pure grade 2 titanium plates, titanium alloys—novel aspects of their manufacturing and processing, Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk. IntechOpen (2018). https://doi.org/10.5772/intechopen.81807

    Article  Google Scholar 

  31. Sordi, V.L., Ferrante, M., Kawasaki, M., Langdon, T.G.: Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J. Mater. Sci. 47, 7870–7876 (2012). https://doi.org/10.1007/s10853-012-6593-x

    Article  Google Scholar 

  32. Nie, M., Wang, C.T., Minghong, Qu., Gao, N., Wharton, J.A., Langdon, T.G.: The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J. Mater. Sci.. 49, 2824–2831 (2014). https://doi.org/10.1007/s10853-013-7988-z

    Article  Google Scholar 

  33. Palanivel, R., Laubscher, R.F., Dinaharan, I., Hattingh, D.G.: Microstructure and mechanical characterization of continuous drive friction welded grade 2 seamless titanium tubes at different rotational speeds. Int. J. Press. Vessels Pip. 154, 17–28 (2017). https://doi.org/10.1016/j.ijpvp.2017.06.005

    Article  Google Scholar 

  34. Tesař, K., Jäger, A.: Electron backscatter diffraction analysis of the crack development induced by uniaxial tension in commercially pure titanium. Mater. Sci. Eng. A 616, 155–160 (2014). https://doi.org/10.1016/j.msea.2014.08.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omkar Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, O., Kakandikar, G. Novel product design of tool for investigating formability with microstructural study of bio-material titanium grade-II thin foils. Int J Interact Des Manuf 17, 2765–2775 (2023). https://doi.org/10.1007/s12008-022-00903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00903-3

Keywords

Navigation