Skip to main content

Advertisement

Log in

A Halotolerant Endo-1,4-β-Xylanase from Aspergillus clavatus with Potential Application for Agroindustrial Residues Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of non-potable water (such as seawater) is an attractive alternative for water intensive processes such as biomass pretreatment and saccharification steps in the production of biochemicals and biofuels. Identification and application of halotolerant enzymes compatible with high-salt conditions may reduce the energy needed for non-potable water treatment and decrease waste treatment costs. Here we present the biochemical properties of a halotolerant endo-1,4-β-xylanase produced by Aspergillus clavatus in submerged fermentation, using paper sludge (XPS) and sugarcane bagasse (XSCB), and its potential application in the hydrolysis of agroindustrial residues. The peptide mass fingerprint and amino acid sequencing of the XPS and XSCB enzymes showed primary structure similarities with an endo-1,4-β-xylanase from Aspergillus clavatus (XYNA_ASPCL). Both enzyme preparations presented good thermal stability at 50 °C and were stable over a wide range of pH and Vmax up to 2450 U/mg for XPS. XPS and XSCB were almost fully stable even after 24 h of incubation in the presence of up to 3 M NaCl, and their activity were not affected by 500 mM NaCl. Both enzyme preparations were capable of hydrolyzing paper sludge and sugarcane bagasse to release reducing sugars. These characteristics make this xylanase attractive to be used in the hydrolysis of biomass, particularly with brackish water or seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23(4), 411–456.

    Article  CAS  Google Scholar 

  2. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3–23.

    Article  CAS  Google Scholar 

  3. Ahmed, S., Riaz, S., & Jamil, A. (2009). Molecular cloning of fungal xylanases: an overview. Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  4. Li, Z., Li, X., Liu, T., Chen, S., Liu, H., Wang, H., Li, K., Song, Y., Luo, X., Zhao, J., & Zhang, T. (2019). The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. International Journal of Biological Macromolecules, 133, 316–323.

    Article  CAS  Google Scholar 

  5. Carli, S., Meleiro, L. P., Rosa, J. C., Moraes, L. A. B., Jorge, J. A., Masui, D. C., & Furriel, R. P. M. (2016). A novel thermostable and halotolerant xylanase from Colletotrichum graminicola. Journal of Molecular Catalysis B: Enzymatic, 133, S508–S517.

    Article  Google Scholar 

  6. Garg, R., Srivastava, R., Brahma, V., Verma, L., Karthikeyan, S., & Sahni, G. (2016). Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Scientific Reports, 6, 39634.

    Article  CAS  Google Scholar 

  7. Adigüzel, A. O., & Tunçer, M. (2016). Production, characterization and application of a xylanase from Streptomyces sp. AOA40 in fruit juice and bakery industries. Food Biotechnology, 30, 189–218.

    Article  Google Scholar 

  8. Pasin, T. M., Lucas, R. C., Scarcella, A. S. A., Silva, Y. H., Betini, J. H. A., Jorge, J. A., & Polizeli, M. L. T. M. (2017). Production of lignocellulolytic enzymes in paper sludge by different Aspergillus. Revista C. T. A, 6, 412–418.

    Google Scholar 

  9. Barratt, R. W., Johnson, G. B., & Ogata, W. N. (1965). Wild-type and mutant stocks of Aspergillus nidulans. Genetics, 52(1), 233–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gurram, R. N., Al-Shannag, M., Lecher, N. J., Duncan, S. M., Singsass, E. L., & Alkasrawi, M. (2015). Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresource Technology, 192, 529–539.

    Article  CAS  Google Scholar 

  11. Vogel, H. F. (1964). Distribution of lysine pathway among fungi: evolutionary implications. The American Naturalist, 98, 435–446.

    Article  CAS  Google Scholar 

  12. Pasin, T. M., Benassi, V. M., Heinen, P. R., Damasio, A. R. L., Cereia, M., Jorge, J. A., & Polizeli, M. L. T. M. (2017). Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus. International Journal of Biological Macromolecules, 102, 779–788.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  16. Haider, S. R., Reid, H. J., & Sharp, B. L. (2012). Tricine-SDS-PAGE. Methods in Molecular Biology, 869, 81–91.

    Article  CAS  Google Scholar 

  17. Castro, L. D. S., Pedersoli, W. R., Antoniêto, A. C. C., Steindorff, A. S., Silva-Rocha, R., Martinez-Rossi, N. M., Rossi, A., Brown, N. A., Goldman, G. H., Faça, V. M., Persinoti, G. F., & Silva, R. N. (2014). Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnology for Biofuels, 7, 41.

    Article  Google Scholar 

  18. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421–430.

    Article  Google Scholar 

  19. Remmert, M., Biegert, A., Hauser, A., & Soding, J. (2012). HHblits: lightning-fast interative protein sequence searching by HMM-HMM alignment. Nature Methods, 9, 173–175.

    Article  CAS  Google Scholar 

  20. Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. Journal of Molecular Graphics, 8, 52–56.

    Article  CAS  Google Scholar 

  21. Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids, 37, 510–514.

    Article  Google Scholar 

  22. Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science, 12(5), 1073–1086.

    Article  CAS  Google Scholar 

  23. Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Investinwirkung. Biochemische Zeitschrift, 49, 333.

    CAS  Google Scholar 

  24. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  25. Bhardwaj, N., Kumar, B., Agarwal, K., Chaturvedi, V., & Verma, P. (2018). Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in xylo-oligosaccharides production from lignocellulosic agricultural wastes. International Journal of Biological Macromolecules, 122, 1191–1202.

    Article  Google Scholar 

  26. Heinen, P. R., Bauermeister, A., Ribeiro, L. F., Messias, J. M., Almeida, P. Z., Moraes, L. A. B., Vargas-Rechia, C. G., de Oliveira, A. H. C., Ward, R. J., Filho, E. X. F., Kadowaki, M. K., Jorge, J. A., & Polizeli, M. L. T. M. (2018). GH11 xylanase from Aspergillus tamarii Kita: purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry. International Journal of Biological Macromolecules, 108, 291–299.

    Article  CAS  Google Scholar 

  27. Singh, A., Sharma, D., Varghese, L. M., Mahajan, R. (2019). Fast flow rate processes for purification of alkaline xylanase isoforms from Bacillus pumilus AJK and their biochemical characterization for industrial application purposes. Biotechnology Progress, e2898, 1–12.

  28. Suleman, M., Bukhari, I. H., Aujla, M. I., Faiz, A. H. (2016). Production and characterization of xylanase from Aspergillus niger using wheat bran, corn cobsand sugar cane bagasse as carbon sources with different concentrations. Journal of Bioresource Management, 3(1), 1–10.

  29. Li, C., Li, J., Wang, R., Li, X., Li, J., Deng, C., & Wu, M. (2018). Substituting both the N-terminal and “Cord” regions of a xylanase from Aspergillus oryzae to improve its temperature characteristics. Applied Biochemistry and Biotechnology, 185(4), 1044–1059.

    Article  CAS  Google Scholar 

  30. Sharma, S., Sharma, V., Nargotra, P., & Bajaj, B. K. (2018). Process desired functional attributes of an endoxylanase of GH10 family from a new strain of Aspergillus terreus S9. International Journal of Biological Macromolecules, 115, 663–671.

    Article  CAS  Google Scholar 

  31. Zhang, H. M., Wang, J. Q., Wu, M. C., Gao, S. J., Li, J. F., & Yang, Y. J. (2014). Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. Journal of the Science of Food and Agriculture, 94(4), 699–706.

    Article  CAS  Google Scholar 

  32. Shariq, M., and Sohail, M. (2019). Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. Journal of King Saud University - Science, 31(4), 1189–1194.

  33. Cunha, C. C. Q. B., Gama, A. R., Cintra, L. C., Bataus, L. A. M., & Ulhoa, C. J. (2018). Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris. PLoS One, 13, e0192996.

    Article  Google Scholar 

  34. Karan, R., Capes, M. D., & DasSarma, S. (2012). Function and biotechnology of extremophilic enzymes in low water activity. AquaticBiosystems, 8, 4.

  35. Wu, J., Qiu, C., Ren, Y., Yan, R., Ye, X., & Wang, G. (2018). Novel salt-tolerant xylanase from a mangrove-isolated fungus Phoma sp. MF13 and its application in Chinese steamed bread. ACS Omega, 3(4), 3708–3716.

    Article  CAS  Google Scholar 

  36. Wang, H., Li, Z., Liu, H., Li, S., Qiu, H., Li, K., Luo, X., Song, Y., Wang, N., He, H., Zhou, H., Ma, W., & Zhang, T. (2017). Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol. Protein Expression and Purification, 139, 71–77.

    Article  CAS  Google Scholar 

  37. Knob, A., & Carmona, E. C. (2010). Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Applied Biochemistry and Biotechnology, 162(2), 429–443.

    Article  CAS  Google Scholar 

  38. Michelin, M., Silva, T. M., Jorge, J. A., & Polizeli, M. L. T. M. (2014). Purification and biochemical properties of multiple xylanases from Aspergillus ochraceus tolerant to Hg2+ ion and a wide range of pH. Applied Biochemistry and Biotechnology, 174(1), 206–220.

    Article  CAS  Google Scholar 

  39. Coutinho, P. M., & Reilly, P. J. (1997). Glucoamylase structural, functional and evolutionary relationships. Proteins: Structure, Function, and Genetics, 29, 334–347.

    Article  CAS  Google Scholar 

  40. Astolfi, V., Astolfi, A. L., Mazutti, M. A., Rigo, E., Di Luccio, M., Camargo, A. F., Dalastra, C., Kubeneck, S., Fongaro, G., & Treichel, H. (2019). Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess and Biosystems Engineering, 42(5), 677–685.

    Article  CAS  Google Scholar 

  41. Scarcella, A. S. A. (2016). Hydrolysis and fermentation of cellulosic residues aiming the ethanol production (in Portuguese). Master thesis, University of São Paulo, Brazil. 157.

  42. Chandel, A. K., Antunes, F. A., Anjos, V., Bell, M. J., Rodrigues, L. N., Polikarpov, I., Azevedo, E. R., Bernardinelli, O. D., Rosa, C. A., Pagnocca, F. C., & da Silva, S. S. (2014). Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 7, 63.

    Article  Google Scholar 

  43. Kurrataa'Yun, Yopi, & Meryandini, A. (2015). Characterization of Xylanase activity produced by Paenibacillus sp. XJ18 from TNBD Jambi, Indonesia. HAYATI Journal of Biosciences, 22, 20–26.

    Article  Google Scholar 

  44. Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances, 30(6), 1219–1227.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fabio M. Squina from Universidade de Sorocaba, Brazil, for providing the A. clavatus NRRL1 strain, Mauricio de Oliveira for technical assistance and Jorge H. A. Betini for providing the paper sludge samples.

Funding

This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/Brasil-financing Code 001 and Programa de Doutorado Sanduíche no Exterior (PDSE/CAPES no. 88881.186934/2018-01), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-Process numbers 2010/52322-3, 2014/50884-5 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, process 563260/2010-6), and the National Institute of Science and Technology of the Bioethanol (465319/2014-9). T.M.P. was recipient of CAPES/PDSE Fellowship and J.C.S.S., A.S.A.S., and R.C.L. were recipients of CAPES Fellowship; T.B.O. is recipient of FAPESP Fellowship (process 2017/09000-4); and J.C.R., R.J.W., M.S.B., and M.L.T.M.P. (process 301963/2017–7) are Research Fellows of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes Teixeira de Moraes Polizeli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasin, T.M., Salgado, J.C.S., Scarcella, A.S.d.A. et al. A Halotolerant Endo-1,4-β-Xylanase from Aspergillus clavatus with Potential Application for Agroindustrial Residues Saccharification. Appl Biochem Biotechnol 191, 1111–1126 (2020). https://doi.org/10.1007/s12010-020-03232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03232-x

Keywords

Navigation