Skip to main content

Advertisement

Log in

The Synergistic Anticancer Traits of Graphene Oxide Plus Doxorubicin Against BT474 and MCF7 Breast Cancer Stem Cells In Vitro

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer is among the leading causes of death due to cancers around the globe. Current therapeutic approaches towards healing of breast cancer have been associated with poor outcomes. Graphene and its derivatives have a two-dimensional flat structure, which is characterized by the ability to carry drugs and modify the surface, low cytotoxicity, and high biocompatibility. This study was performed on MCF7 and BT474 human breast cancer cells. Different concentrations of doxorubicin (DOX), graphene oxide (GO), and graphene oxide plus doxorubicin (GO-DOX) were subjected to both cell lines at specified intervals. At the end of the treatments, MTT test was applied to determine the viability of cells, and then flow cytometry, colony formation, and spheroid tests were implemented in both cell lines treated with DOX, GO, and GO-DOX components. We used DLS and TEM to confirm the GO properties. According to the MTT test results, 1 μL of DOX at 10 mg/ml (equivalent to 0.1 mg/ml) caused 50% survival of MCF7 cells at 24 h. In both cell lines, an increase in apoptosis occurred after incubation with GO and DOX. Although a rate of mortality of MCF-7 cells was due to necrosis, the BT474 cell death was merely through the apoptosis. Furthermore, the results of the colony formation test outlined an enhancing inhibitory effect in the presence of GO-DOX as a comparison to the control. Additionally, spheroids formed following treatment with GO-DOX exhibited a significant decrease compared to their control group, with an increase in the number of spheroids in BT474 cells compared to those in the MCF-7. The decreasing effect of compounds against the migration and cell invasion potential was also observed, being higher in MCF7 than BT474 cells. The effects of cytotoxic GO were observed at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Chart 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Bertram, J. S. (2000). The molecular biology of cancer. Molecular Aspects of Medicine, 21(6), 167–223.

    Article  CAS  PubMed  Google Scholar 

  2. Vineis, P., & Wild, C. P. (2014). Global cancer patterns: Causes and prevention. The Lancet, 383(9916), 549–557.

    Article  Google Scholar 

  3. Ehsanfar, P., Teimouri, M., & Pooladi, M. (2020). Investigating characterizations and antifungal effects of solid lipid nanoparticles (SLNs) loaded with essential oil of Citrus Aurantifolia on isolated Malassezia strains. Archives of Advances in Biosciences, 11(3), 43–55.

    Google Scholar 

  4. Telli, M. L., Gradishar, W. J., & Ward, J. H. (2019). NCCN guidelines updates: Breast cancer. Journal of the National Comprehensive Cancer Network, 17(5.5), 552–555.

    PubMed  Google Scholar 

  5. Teimouri, M., & Pooladi, M. (2021). Anti-angiogenic and anti-proliferative effects of Physalis alkekengi hydroalcholic extract on breast cancer in mice. Journal of Fasa University of Medical Sciences, 10(4), 1–8.

    Google Scholar 

  6. Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., Hoctin-Boes, G., Houghton, J., Locker, G. Y., & Tobias, J. S. (2005). Results of the ATAC (Arimidex, Tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365(9453), 60–62.

    Article  CAS  PubMed  Google Scholar 

  7. Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lim, E. K., Kim, T., Paik, S., Haam, S., Huh, Y. M., & Lee, K. (2015). Nanomaterials for theranostics: Recent advances and future challenges. Chemical Reviews, 115(1), 327–394.

    Article  CAS  PubMed  Google Scholar 

  9. Duran, N., Martinez, D., Silveira, C., Duran, M., de Moraes, A., Simoes, M., Alves, O., & Favaro, W. (2015). Graphene oxide: A carrier for pharmaceuticals and a scaffold for cell interactions. Current Topics in Medicinal Chemistry, 15(4), 309–327. https://doi.org/10.2174/1568026615666150108144217

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, J. H., Pi, J., Jin, H., & Cai, & J. Y. . (2018). Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artificial Cells Nanomedicine, and Biotechnology, 46(sup3), S297-307.

    Article  CAS  Google Scholar 

  11. Qin, X. C., Guo, Z. Y., Liu, Z. M., Zhang, W., Wan, M. M., & Yang, B. W. (2013). Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Journal of Photochemistry and Photobiology B: Biology, 120, 156–162.

    Article  CAS  Google Scholar 

  12. Kumar, S., Srivastava, S., Yadav, B. K., Lee, S. H., Sharma, J. G., Doval, D. C., & Malhotra, B. D. (2015). Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosensors and Bioelectronics, 73, 114–122.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, L. N., Deng, H. H., Lin, F. L., Xu, X. W., Weng, S. H., Liu, A. L., Lin, X. H., Xia, X. H., & Chen, W. (2014). In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Analytical Chemistry, 86(5), 2711–2718.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, F., Sun, Q., Feng, B., Xu, Z., Zhang, J., Xu, J., Lu, L., Yu, H., Wang, M., Li, Y., & Zhang, W. (2016). Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer. Advanced Healthcare Materials, 5(17), 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, D., Feng, L., Dougherty, C. A., Luker, K. E., Chen, D., Cauble, M. A., Holl, M. M., Luker, G. D., Ross, B. D., Liu, Z., & Hong, H. (2016). In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials, 104, 361–371.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Muzyka, R., Kwoka, M., Smędowski, Ł, Díez, N., & Gryglewicz, G. (2017). Oxidation of graphite by different modified Hummers methods. New Carbon Materials, 32(1), 15–20.

    Article  CAS  Google Scholar 

  17. Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., & Tang, H. (2011). TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon, 49(8), 2693–2701.

    Article  CAS  Google Scholar 

  18. Teng, C. Y., Yeh, T. F., Lin, K. I., Chen, S. J., Yoshimura, M., & Teng, H. (2015). Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 3(17), 4553–4562.

    Article  CAS  Google Scholar 

  19. Teng, C. Y., Nguyen, B. S., Yeh, T. F., Lee, Y. L., Chen, S. J., & Teng, H. (2017). Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale, 9(24), 8256–8265.

    Article  CAS  PubMed  Google Scholar 

  20. Fiorillo, M., Verre, A. F., Iliut, M., Peiris-Pagés, M., Ozsvari, B., Gandara, R., Cappello, A. R., Sotgia, F., Vijayaraghavan, A., & Lisanti, M. P. (2015). Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy.” Oncotarget, 6(6), 3553.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yoon, H. J., Kim, T. H., Zhang, Z., Azizi, E., Pham, T. M., Paoletti, C., Lin, J., Ramnath, N., Wicha, M. S., Hayes, D. F., & Simeone, D. M. (2013). Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nature Nanotechnology, 8(10), 735–741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kim, H. W., Yoon, H. W., Yoon, S. M., Yoo, B. M., Ahn, B. K., Cho, Y. H., Shin, H. J., Yang, H., Paik, U., Kwon, S., & Choi, J. Y. (2013). Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 342(6154), 91–95.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, K., Wan, J., Zhang, S., Tian, B., Zhang, Y., & Liu, Z. (2012). The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 33(7), 2206–2214.

    Article  CAS  PubMed  Google Scholar 

  24. Ku, S. H., & Park, C. B. (2013). Myoblast differentiation on graphene oxide. Biomaterials, 34(8), 2017–2023.

    Article  CAS  PubMed  Google Scholar 

  25. Alibolandi, M., Mohammadi, M., Taghdisi, S. M., Ramezani, M., & Abnous, K. (2017). Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydrate Polymers, 155, 218–229.

    Article  CAS  PubMed  Google Scholar 

  26. Sasidharan, A., Swaroop, S., Chandran, P., Nair, S., & Koyakutty, M. (2016). Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells. Nanomedicine: Nanotechnology, Biology and Medicine, 12(5), 1347–1355. https://doi.org/10.1016/j.nano.2016.01.014

    Article  CAS  Google Scholar 

  27. Chatterjee, N., Eom, H. J., & Choi, J. (2014). A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials, 35(4), 1109–11027.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan, Y., Gao, X., Wei, Y., Wang, X., Wang, J., Zhang, Y., & Gao, C. (2017). Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination, 405, 29–39.

    Article  CAS  Google Scholar 

  29. Dutta, T., Sarkar, R., Pakhira, B., Ghosh, S., Sarkar, R., Barui, A., & Sarkar, S. (2015). ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: Comparison with graphene oxide (GO). RSC Advances, 5(98), 80192–80195.

    Article  CAS  Google Scholar 

  30. Ordikhani, F., Farani, M. R., Dehghani, M., Tamjid, E., & Simchi, A. (2015). Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon, 84, 91–102.

    Article  CAS  Google Scholar 

  31. Chen, J., Wang, X., & Han, H. (2013). A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv Oryzae. Journal of Nanoparticle Research, 15(5), 1–4.

    Article  Google Scholar 

  32. Chang, Y., Yang, S. T., Liu, J. H., Dong, E., Wang, Y., Cao, A., Liu, Y., & Wang, H. (2011). In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 200(3), 201–210.

    Article  CAS  PubMed  Google Scholar 

  33. Arya, N., Arora, A., Vasu, K. S., Sood, A. K., & Katti, D. S. (2013). Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: A reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale, 5(7), 2818–2829.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Ouyang, S., Mu, L., An, J., & Zhou, Q. (2015). Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles. Environmental Science & Technology, 49(18), 10825–10833.

    Article  CAS  Google Scholar 

  35. Vallabani, N. V., Mittal, S., Shukla, R. K., Pandey, A. K., Dhakate, S. R., Pasricha, R., & Dhawan, A. (2011). Toxicity of graphene in normal human lung cells (BEAS-2B). Journal of Biomedical Nanotechnology, 7(1), 106–107.

    Article  CAS  PubMed  Google Scholar 

  36. Chung, C., Kim, Y. K., Shin, D., Ryoo, S. R., Hong, B. H., & Min, D. H. (2013). Biomedical applications of graphene and graphene oxide. Accounts of Chemical Research, 46(10), 2211–2224.

    Article  CAS  PubMed  Google Scholar 

  37. Tadyszak, K., Wychowaniec, J. K., & Litowczenko, J. (2018). Biomedical applications of graphene-based structures. Nanomaterials, 8(11), 944.

    Article  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Islamic Azad University, Iran.

Author information

Authors and Affiliations

Authors

Contributions

M Pooladi and M Teimouri designed the study, dathcred and analyzed the data, and wrote the paper. M Ebrahimi and M Pooladi contributed to study design.

Corresponding author

Correspondence to Maryam Teimouri.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

I confirm that the final manuscript has been seen and approved by all the authors. The undersigned author transfers all copyright ownership of the manuscript to the International Journal of Applied Biochemistry and Biotechnology in the event the work is published.

Consent to Publish

We hope that you will find our manuscript acceptable for publication in the above journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Teimouri, M. & Pooladi, M. The Synergistic Anticancer Traits of Graphene Oxide Plus Doxorubicin Against BT474 and MCF7 Breast Cancer Stem Cells In Vitro. Appl Biochem Biotechnol 193, 3586–3601 (2021). https://doi.org/10.1007/s12010-021-03623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03623-8

Keywords

Navigation