Skip to main content

Advertisement

Log in

Phytochemical Characterization, Antioxidant, Anti-inflammatory, Anti-diabetic properties, Molecular Docking, Pharmacokinetic Profiling, and Network Pharmacology Analysis of the Major Phytoconstituents of Raw and Differently Dried Mangifera indica (Himsagar cultivar): an In Vitro and In Silico Investigations

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mango (Himsagar cultivar) is a high moisture-bearing seasonal fruit and cultivated in a wide range of the world. Mango pulp is generally preserved by sun drying. In recent days, industries are using hot-air oven, freeze, and microwave drying for mango leather (dried mango pulp in the sheet like texture) processing. Here, all these four drying methods were studied to determine the effect of drying on mango leather processing. RP-HPLC and FTIR were studied for analysis of polyphenol profile and predominant functional groups in raw and processed samples. The phytochemical analysis and medicinal properties (antioxidant, anti-diabetic, and anti-inflammatory activity) of all five mango samples were studied. The bioinformatics approach was studied to evaluate the bioactive potential of the phytochemicals derived from the samples. Freeze-dried mango leather was found to be the highest in DPPH (74.23%) and Superoxide (66.04%) activity, though raw mango pulp was observed with the highest H2O2 activity (73.24%). Gallic acid was the predominant phenolic acid present in all five samples and it was maximum in the case of freeze-dried sample (2.76 ± 0.04 mg/100 g MD). On the other hand, quercetin was the predominant flavonoid, it was found maximum for freeze-dried sample (3.93 ± 0.21 mg/100 g MD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

Code Availability

Not applicable.

References

  1. Sarkar, T., & Chakraborty, R. (2018). Formulation, physicochemical analysis, sustainable packaging-storage provision, environment friendly drying techniques and energy consumption characteristics of mango leather production: A review. Asian Journal of Water, Environment and Pollution, 15, 79–92. https://doi.org/10.3233/AJW-180046

  2. Ibrahim, N. A., El-Sakhawy, F. S., Mohammed, M. M. D., Farid, M. A., Abdel-Wahed, N. A. M., & Deabes, D. A. H. (2015). Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science, 5, 1–005. https://doi.org/10.7324/JAPS.2015.50201

    Article  CAS  Google Scholar 

  3. González-Romero, J., Arranz-Arranz, S., Verardo, V., García-Villanova, B., & Guerra-Hernández, E. J. (2020). Bioactive Compounds and Antioxidant Capacity of Moringa Leaves Grown in Spain Versus 28 Leaves Commonly Consumed in Pre-Packaged Salads. Processes, 8, 1297. https://doi.org/10.3390/pr8101297

    Article  CAS  Google Scholar 

  4. Valadez-Carmona, L., Plazola-Jacinto, C. P., Hernández-Ortega, M., Hernández-Navarro, M. D., Villarreal, F., Necoechea-Mondragón, H., Ortiz-Moreno, A., & Ceballos-Reyes, G. (2017). Effects of microwaves, hot air and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity and microstructure of cacao pod husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies, 2017, 378–386.

    Article  CAS  Google Scholar 

  5. Sarkar, T., Salauddin, M., Choudhury, T., Um, J. S., Pati, S., Hazra, S. K., & Chakraborty, R. (2021). Spatial optimisation of mango leather production and colour estimation through conventional and novel digital image analysis technique. Spatial Information Research, 29(4), 439–453. https://doi.org/10.1007/s41324-020-00377-z

    Article  Google Scholar 

  6. FitzGerald, R. J., Cermeño, M., Khalesi, M., Kleekayai, T., & Amigo-Benavent, M. (2020). Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods, 64, 103636. https://doi.org/10.1016/j.jff.2019.103636

    Article  CAS  Google Scholar 

  7. Amigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In silico and In vitro analysis of multifunctionality of animal food-derived peptides. Foods, 9(8), 991. https://doi.org/10.3390/foods9080991

    Article  PubMed Central  CAS  Google Scholar 

  8. Sarkar, T., Nayak, P., & Chakraborty, R. (2020). Storage study of mango leather in sustainable packaging condition. Materials Today: Proceedings, 22, 2001–2007. https://doi.org/10.1016/j.matpr.2020.03.177

    Article  CAS  Google Scholar 

  9. Sarkar, T., Salauddin, M., Hazra, S., Choudhury, T., & Chakraborty, R. (2021). Comparative approach of artificial neural network and thin layer modelling for drying kinetics and optimization of rehydration ratio for bael (Aegle marmelos (L) correa) powder production. Economic Computation and Economic Cybernetics Studies and Research, 55, 167–184. https://doi.org/10.24818/18423264/55.1.21.11

    Article  Google Scholar 

  10. Hazra, S. K., Sarkar, T., Salauddin, M., Sheikh, H. I., Pati, S., & Chakraborty, R. (2020). Characterization of phytochemicals, minerals and in vitro medicinal activities of bael (Aegle marmelos L.) pulp and differently dried edible leathers. Heliyon, 6, e05382. https://doi.org/10.1016/j.heliyon.2020.e05382

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gul, R., Jan, S.U., Faridullah, S., Sherani, S., Jahan, N. (2017). Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. The Scientific World Journal, 2017. https://doi.org/10.1155/2017/5873648.

  12. Joshi, B., Prasad Sah, G., Bahadur Basnet, B., Raj Bhatt, M., Sharma, D., Subedi, K., Pandey, J., & Malla, R. (2011). Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). Journal of Microbiology and Antimicrobials, 3, 1–7.

    Google Scholar 

  13. Auwal, M. S., Saka, S., Mairiga, I. A., Sanda, K. A., Shuaibu, A., & Ibrahim, A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum: an International Quarterly Journal, 5, 95–100.

    Google Scholar 

  14. Ruvini, L., Dissanayaka, W., Chathuni, J., Rizliya, V., & Swarna, W. (2017). Effect of Different Drying Methods on Antioxidant Activity of Star Fruits (Averrhoa Carambola L.). Journal of Nutrition and Diet Supplements, 1, 1–6.

    Google Scholar 

  15. Kamiloglu, S., Demirci, M., Selen, S., Toydemir, G., Boyacioglu, D., & Capanoglu, E. (2014). Home processing of tomatoes (Solanum lycopersicum): Effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity. Journal of the Science of Food and Agriculture, 94, 2225–2233. https://doi.org/10.1002/jsfa.6546

    Article  PubMed  CAS  Google Scholar 

  16. Kasote, D. M., Jayaprakasha, G. K., & Patil, B. S. (1884). Leaf Disc Assays for Rapid Measurement of Antioxidant Activity. Science and Reports, 2019, 9. https://doi.org/10.1038/s41598-018-38036-x

    Article  CAS  Google Scholar 

  17. Prathapan, A., Krishna, M. S., Nisha, V. M., Sundaresan, A., & Raghu, K. G. (2012). Polyphenol rich fruit pulp of Aegle marmelos (L.) Correa exhibits nutraceutical properties to down regulate diabetic complications — An in vitro study. Food Research International, 48, 690–695. https://doi.org/10.1016/j.foodres.2012.06.008

    Article  CAS  Google Scholar 

  18. Faller, A. L. K., Fialho, E., & Liu, R. H. (2012). Cellular antioxidant activity of feijoada whole meal coupled with an in vitro digestion. Journal of Agriculture and Food Chemistry, 60, 4826–4832. https://doi.org/10.1021/jf300602w

    Article  CAS  Google Scholar 

  19. Pavan, V., Sancho, R. A. S., & Pastore, G. M. (2014). The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT- Food Science and Technology, 59, 1247–1251. https://doi.org/10.1016/j.lwt.2014.05.040

    Article  CAS  Google Scholar 

  20. Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of Tropical Biomedicine, 2, S178–S180. https://doi.org/10.1016/S2221-1691(12)60154-3

    Article  Google Scholar 

  21. Sakat, S. S., Juvekar, A. R., & Gambhire, M. N. (2010). In-vitro antioxidant and anti inflammatory activity of methanol extract of oxalis corniculata linn. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 146–155.

    Google Scholar 

  22. Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Science and Human Wellness, 3, 16–25. https://doi.org/10.1016/j.fshw.2014.02.001

    Article  Google Scholar 

  23. AOAC. (2019). AOAC International, Official Methods of Analysis, 21st edn. Arlington, Va, USA.

  24. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pires, D. E., Blundell, T., & Ascher, D. (2015). pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072.

    Article  CAS  Google Scholar 

  26. Gu, L., Lu, J., Li, Q., Wu, N., Zhang, L., Li, H., Xing, W., & Zhang, X. (2020). A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer’s disease and experimental validation. Journal of Ethnopharmacology, 251, 112488. https://doi.org/10.1016/j.jep.2019.112488

    Article  PubMed  CAS  Google Scholar 

  27. Mahomoodally, M. F., Picot-Allain, M. C. N., Zengin, G., Llorent-Martínez, E. J., Abdullah, H. H., Ak, G., Senkardes, I., Chiavaroli, A., Menghini, L., Recinella, L., et al. (2020). Phytochemical Analysis, Network Pharmacology and in Silico Investigations on Anacamptis pyramidalis Tuber Extracts. Molecules, 25, 2422. https://doi.org/10.3390/molecules25102422

    Article  CAS  Google Scholar 

  28. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Roy, A. (2017). A Review on the Alkaloids an Important Therapeutic Compound from Plants. International Journal of Plant Biotechnology, 3, 1–9. https://doi.org/10.37628/IJPB.V3I2.199

    Article  Google Scholar 

  30. Hussain, G., Rasul, A., Anwar, H., Aziz, N., Razzaq, A., Wei, W., Ali, M., Li, J., & Li, X. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. International Journal of Biological Sciences, 14, 341–357. https://doi.org/10.7150/ijbs.23247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Singh, R., & Kumari, N. (2015). Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. - A valuable medicinal tree. Industrial Crops and Products., 73, 1–8. https://doi.org/10.1016/j.indcrop.2015.04.012

    Article  CAS  Google Scholar 

  32. Singh, B., & Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5, 129–151. https://doi.org/10.1007/s13205-014-0220-2

    Article  PubMed  Google Scholar 

  33. Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26. https://doi.org/10.1016/j.abb.2018.06.001

    Article  PubMed  CAS  Google Scholar 

  34. Liang, N., & Kitts, D. D. (2014). Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules, 19, 19180–19208. https://doi.org/10.3390/molecules191119180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shalaby, E., & Shanab, S. M. (2013). Antioxidant compounds, assays of determination and mode of action. African Journal of Pharmacy and Pharmacology, 7, 528–539. https://doi.org/10.5897/AJPP2013.3474

    Article  CAS  Google Scholar 

  36. Li, L., Wang, S., Chen, J., Xie, J., Wu, H., Zhan, R., & Li, W. (2014). Major Antioxidants and In Vitro Antioxidant Capacity of Eleven Mango (Mangifera Indica L.) Cultivars. International Journal of Food Properties, 17, 1872–1887. https://doi.org/10.1080/10942912.2012.687798

    Article  CAS  Google Scholar 

  37. İzli, G. (2017). Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Science and Technology, 37, 139–147. https://doi.org/10.1590/1678-457X.14516

    Article  Google Scholar 

  38. Ramírez-Rivera, E. de J., Ramón-Canul, L. G., Díaz-Rivera, P., Juárez-Barrientos, J. M., Herman-Lara, E., Prinyawiwatkul, W., & Herrera-Corredor, J. A. (2017). Sensory profiles of artisan goat cheeses as influenced by the cultural context and the type of panel. International Journal of Food Science & Technology, 52, 1789–1800. https://doi.org/10.1111/ijfs.13452

    Article  CAS  Google Scholar 

  39. Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12, 1174. https://doi.org/10.1186/1472-6882-12-221

    Article  CAS  Google Scholar 

  40. Sarkar, T., Saha, S., Saluddin, M., & Chakraborty, R. (2021). Drying Kinetics, Fourier-Transform Infrared Spectroscopy Analysis and Sensory Evaluation of Sun, Hot-Air, Microwave and Freeze Dried Mango Leather. Journal of Microbiology, Biotechnology and Food Sciences, 10, 1–7.

    Article  CAS  Google Scholar 

  41. Izli, N., Izli, G., & Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37, 604–612. https://doi.org/10.1590/1678-457x.28316

    Article  Google Scholar 

  42. Annegowda, H. V., Bhat, R., Yeong, K. J., Liong, M.-T., Karim, A. A., & Mansor, S. M. (2014). Influence of Drying Treatments on Polyphenolic Contents and Antioxidant Properties of Raw and Ripe Papaya (Carica papaya L.). International Journal of Food Properties, 17, 283–292. https://doi.org/10.1080/10942912.2011.631248

    Article  CAS  Google Scholar 

  43. Ribeiro, R., Machado, S., Queiroz, J. H., Lopes Ribeiro de Queiroz, M. E., Campos, F. M., & Pinheiro Sant’ Ana, H. M. (2007). Antioxidant in Mango (Mangifera indica L.) Pulp. Plant Foods for Human Nutrition, 62, 13–17. https://doi.org/10.1007/s11130-006-0035-3

    Article  CAS  Google Scholar 

  44. Saini, R. K., Shetty, N. P., Prakash, M., & Giridhar, P. (2014). Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. Journal of Food Science and Technology, 51, 2176–2182. https://doi.org/10.1007/s13197-014-1264-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. İncedayi, B., Tamer, C. E., Sinir, G. Ö., Suna, S., & Çopur, Ö. U. (2016). Impact of different drying parameters on color, β-carotene, antioxidant activity and minerals of apricot (Prunus armeniaca L.). Food Science and Technology, 36, 171–178. https://doi.org/10.1590/1678-457X.0086

    Article  Google Scholar 

  46. de Ancos, B., Sánchez-Moreno, C., Zacarías, L., Rodrigo, M. J., Sáyago Ayerdí, S., Blancas Benítez, F. J., Domínguez Avila, J. A., & González-Aguilar, G. A. (2018). Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products. Journal of Food Measurement and Characterization, 12, 2145–2157. https://doi.org/10.1007/s11694-018-9830-4

    Article  Google Scholar 

  47. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11–26. https://doi.org/10.1007/s12291-014-0446-0

    Article  PubMed  CAS  Google Scholar 

  48. Miękus, N., Iqbal, A., Marszałek, K., Puchalski, C., & Świergiel, A. (2019). Green Chemistry Extractions of Carotenoids from Daucus carota L.-Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules, 24, 4339. https://doi.org/10.3390/molecules24234339

    Article  PubMed Central  CAS  Google Scholar 

  49. Hunter, K. J., & Fletcher, J. M. (2002). The antioxidant activity and composition of fresh, frozen, jarred and canned vegetables. Innovative Food Science and Emerging Technologies, 3, 399–406.

    Article  CAS  Google Scholar 

  50. Robles-Sánchez, R. M., Islas-Osuna, M. A., Astiazarán-García, H., Vázquez-Ortiz, F. A., Martín-Belloso, O., Gorinstein, S., & González-Aguilar, G. A. (2009). Quality Index, Consumer Acceptability, Bioactive Compounds, and Antioxidant Activity of Fresh-Cut “Ataulfo” Mangoes (Mangifera Indica L.) as Affected by Low-Temperature Storage. Journal of Food Science, 74, S126–S134. https://doi.org/10.1111/j.1750-3841.2009.01104.x

    Article  PubMed  CAS  Google Scholar 

  51. Shofian, N. M., Hamid, A. A., Osman, A., Saari, N., Anwar, F., Dek, M. S. P., & Hairuddin, M. R. (2011). Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits. International Journal of Molecular Sciences, 12, 4678–4692. https://doi.org/10.3390/ijms12074678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ling, L. T., Yap, S. A., Radhakrishnan, A. K., Subramaniam, T., Cheng, H. M., & Palanisamy, U. D. (2009). Standardised Mangifera indica extract is an ideal antioxidant. Food Chemistry, 113, 1154–1159. https://doi.org/10.1016/j.foodchem.2008.09.004

    Article  CAS  Google Scholar 

  53. Das, S., Alam, M. D. N., Batuta, S., Roy, N., & Begum, N. A. (2015). Exploring Comparative Antioxidant Activity of Some Popular Cultivars of Mangifera indica L., National Fruit of India. International Journal of Fruit Science, 15, 129–147. https://doi.org/10.1080/15538362.2014.954509

    Article  Google Scholar 

  54. Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5, e03044. https://doi.org/10.1016/j.heliyon.2019.e03044

    Article  PubMed  PubMed Central  Google Scholar 

  55. Piskov, S., Timchenko, L., Grimm, W. D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., & Kurchenko, V. (2020). Effects of various drying methods on some physico-chemical properties and the antioxidant profile and ACE inhibition activity of oyster mushrooms (Pleurotus ostreatus). Foods, 9, 160. https://doi.org/10.3390/foods9020160

    Article  PubMed Central  CAS  Google Scholar 

  56. Cheng, K., Dong, W., Long, Y., Zhao, J., Hu, R., Zhang, Y., & Zhu, K. (2019). Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans. Food Science & Nutrition, 7, 1084–1095. https://doi.org/10.1002/fsn3.948

    Article  CAS  Google Scholar 

  57. Dziki, D., Gawlik-Dziki, U., Pecio, Ł, Różyło, R., Świeca, M., Krzykowski, A., & Rudy, S. (2015). Ground green coffee beans as a functional food supplement – Preliminary study. LWT- Food Science and Technology, 63, 691–699. https://doi.org/10.1016/j.lwt.2015.03.076

    Article  CAS  Google Scholar 

  58. Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128, 14–21. https://doi.org/10.1016/j.foodchem.2011.02.052

    Article  PubMed  CAS  Google Scholar 

  59. Correa-Betanzo, J., Allen-Vercoe, E., McDonald, J., Schroeter, K., Corredig, M., & Paliyath, G. (2014). Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry, 165, 522–531. https://doi.org/10.1016/j.foodchem.2014.05.135

    Article  PubMed  CAS  Google Scholar 

  60. Meyer, J. H. (1980). Gastric emptying of ordinary food: Effect of antrum on particle size. American Journal of Physiology, 239, G133–G135. https://doi.org/10.1152/ajpgi.1980.239.3.G133

    Article  CAS  Google Scholar 

  61. Su, D., Li, N., Chen, M., Yuan, Y., He, S., Wang, Y., Wu, Q., Li, L., Yang, H., & Zeng, Q. (2018). Effects of in vitro digestion on the composition of flavonoids and antioxidant activities of the lotus leaf at different growth stages. International Journal of Food Science & Technology, 53, 1631–1639. https://doi.org/10.1111/ijfs.13746

    Article  CAS  Google Scholar 

  62. Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Research International, 44, 217–224. https://doi.org/10.1016/j.foodres.2010.10.033

    Article  CAS  Google Scholar 

  63. Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. Journal of Agriculture and Food Chemistry, 50, 2308–2312. https://doi.org/10.1021/jf0113833

    Article  CAS  Google Scholar 

  64. Fazzari, M., Fukumoto, L., Mazza, G., Livrea, M. A., Tesoriere, L., & Di, Marco L. (2008). In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus avium L.). Journal of Agricultural and Food Chemistry, 56, 3561–3568. https://doi.org/10.1021/jf073506a

    Article  PubMed  CAS  Google Scholar 

  65. Liu, C., He, W., Chen, S., Chen, J., Zeng, M., Qin, F., & He, Z. (2017). Interactions of digestive enzymes and milk proteins with tea catechins at gastric and intestinal pH. International Journal of Food Science & Technology, 52, 247–257. https://doi.org/10.1111/ijfs.13276

    Article  CAS  Google Scholar 

  66. Scrob, T., Hosu, A., & Cimpoiu, C. (2019). The Influence of in Vitro Gastrointestinal Digestion of Brassica oleracea Florets on the Antioxidant Activity and Chlorophyll, Carotenoid and Phenolic Content. Antioxidants (Basel, Switzerland), 8, 212. https://doi.org/10.3390/antiox8070212

    Article  CAS  Google Scholar 

  67. Courraud, J., Berger, J., Cristol, J.-P., & Avallone, S. (2013). Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chemistry, 136, 871–877. https://doi.org/10.1016/j.foodchem.2012.08.076

    Article  PubMed  CAS  Google Scholar 

  68. Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., & Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agriculture and Food Chemistry, 54, 8749–8755. https://doi.org/10.1021/jf061818s

    Article  CAS  Google Scholar 

  69. Chiang, C.-J., Kadouh, H., & Zhou, K. (2013). Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT- Food Science and Technology, 51, 417–422. https://doi.org/10.1016/j.lwt.2012.11.014

    Article  CAS  Google Scholar 

  70. Liang, L., Wu, X., Zhao, T., Zhao, J., Li, F., Zou, Y., Mao, G., & Yang, L. (2012). In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Research International, 46, 76–82. https://doi.org/10.1016/j.foodres.2011.11.024

    Article  CAS  Google Scholar 

  71. Kamiloglu, S., Pasli, A. A., Ozcelik, B., & Capanoglu, E. (2014). Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT- Food Science and Technology, 56, 284–289. https://doi.org/10.1016/j.lwt.2013.11.040

    Article  CAS  Google Scholar 

  72. Mustafa, I., Chin, N. L., Fakurazi, S., & Palanisamy, A. (2019). Comparison of phytochemicals, antioxidant and anti-inflammatory properties of sun-, oven- And freeze-dried ginger extracts. Foods, 8, 456. https://doi.org/10.3390/foods8100456

    Article  PubMed Central  CAS  Google Scholar 

  73. Chou, C. T. (1997). The antiinflammatory effect of an extract of Tripterygium wilfordii Hook F on adjuvant-induced paw oedema in rats and inflammatory mediators release. Phytotherapy Research, 11, 152–154. https://doi.org/10.1002/(SICI)1099-1573(199703)11:2<152::AID-PTR45>3.0.CO;2-L

  74. Kuganesan, A., Thiripuranathar, G., Navaratne, A. N., & Paranagama, P. A. (2017). Antioxidant and Anti-Inflammatory Activities of Peels, Pulps and Seed Kernels of Three Common Mango (Mangifera Indical L.) Varieties in Sri Lanka. International Journal of Pharmaceutical Sciences and Research, 8, 70–78. https://doi.org/10.13040/IJPSR.0975-8232.8(1).70-78

    Article  CAS  Google Scholar 

  75. Sekar, V., Chakraborty, S., Mani, S., Sali, V. K., & Vasanthi, H. R. (2019). Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South African Journal of Botany, 120, 129–134. https://doi.org/10.1016/j.sajb.2018.02.001

    Article  CAS  Google Scholar 

  76. Zhu, Y., Dong, Y., Qian, X., Cui, F., Guo, Q., Zhou, X., Wang, Y., Zhang, Y., & Xiong, Z. (2012). Effect of superfine grinding on antidiabetic activity of bitter melon powder. International Journal of Molecular Sciences, 13, 14203–14218. https://doi.org/10.3390/ijms131114203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zainol, M. K. M., Abdul-Hamid, A., Bakar, F. A., & Dek, S. P. (2009). Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. International Food Research Journal, 16, 531–537.

    Google Scholar 

  78. Çoklar, H., & Akbulut, M. (2017). Effect of Sun, Oven and Freeze-Drying on Anthocyanins, Phenolic Compounds and Antioxidant Activity of Black Grape (Ekşikara) (Vitis vinifera L.). South African Journal of Enology and Viticulture, 38, 264–272.

    Article  Google Scholar 

  79. Vijayalakshmi, R., & Ravindhran, R. (2012). Comparative fingerprint and extraction yield of Diospyrus ferrea (willd.) Bakh. root with phenol compounds (gallic acid), as determined by uv–vis and ft–ir spectroscopy. Asian Pacific Journal of Tropical Biomedicine., 2, S1367–S1371. https://doi.org/10.1016/S2221-1691(12)60418-3

    Article  Google Scholar 

  80. Zhu, J., Sun, X., Wang, S., Xu, Y., & Wang, D. (2017). Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocoll., 63, 391–403. https://doi.org/10.1016/j.foodhyd.2016.09.027

    Article  CAS  Google Scholar 

  81. Yun, J. W. (2010). Possible anti-obesity therapeutics from nature–a review. Phytochemistry, 71, 1625–1641. https://doi.org/10.1016/j.phytochem.2010.07.011

    Article  PubMed  CAS  Google Scholar 

  82. Sales, P. M., Souza, P. M., Simeoni, L. A., & Silveira, D. (2012). α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques, 15, 141–183. https://doi.org/10.18433/j35s3k

    Article  Google Scholar 

  83. Baker, D. J., Timmons, J. A., & Greenhaff, P. L. (2005). Glycogen phosphorylase inhibition in type 2 diabetes therapy: A systematic evaluation of metabolic and functional effects in rat skeletal muscle. Diabetes, 54, 2453–2459. https://doi.org/10.2337/diabetes.54.8.2453

    Article  PubMed  CAS  Google Scholar 

  84. Hotta, N., Akanuma, Y., Kawamori, R., Matsuoka, K., Oka, Y., Shichiri, M., Toyota, T., Nakashima, M., Yoshimura, I., Sakamoto, N., et al. (2006). Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care, 29, 1538–1544. https://doi.org/10.2337/dc05-2370

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ramdhan Majhi (MDLC facility, Indian Institute of Chemical Biology, Kolkata, India) for his continuous support and guidance in HPLC analysis.

Author information

Authors and Affiliations

Authors

Contributions

T.S and R.C conceived and designed the experiments; T.S and M.S performed the experiments; T.S, K.K.B analyzed the data; R.C resources, T.S, M.S, K.K.B, writing—original draft preparation, M.S formatting, editing according journal guidelines, T.S, M.S, K.K.B, S.P, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Tanmay Sarkar or Runu Chakraborty.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors have agreed to participate in the publication of the paper.

Consent for Publication

All authors have agreed to publish the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1765 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Bharadwaj, K.K., Salauddin, M. et al. Phytochemical Characterization, Antioxidant, Anti-inflammatory, Anti-diabetic properties, Molecular Docking, Pharmacokinetic Profiling, and Network Pharmacology Analysis of the Major Phytoconstituents of Raw and Differently Dried Mangifera indica (Himsagar cultivar): an In Vitro and In Silico Investigations. Appl Biochem Biotechnol 194, 950–987 (2022). https://doi.org/10.1007/s12010-021-03669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03669-8

Keywords

Navigation