Skip to main content
Log in

A Simple Organic Solvent-Free Liquid-Liquid Microextraction Method for the Determination of Potentially Toxic Metals as 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol Complex from Food and Biological Samples

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An organic solvent-free method was developed to extract some potentially toxic metals, as complexed with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol, from different real samples prior to their determination by microsampling flame atomic absorption spectrometry. The method, named ionic liquid-based ultrasound-enhanced air-assisted liquid-liquid microextraction (IL-USE-AALLME), is based upon withdrawing and pushing out a mixture of an aqueous sample and an IL (as the extraction solvent) for several times into a conical test tube using a single syringe, placed in an ultrasound bath (as the enhancing mass transfer agent) during the extraction process. Different effective parameters were studied, and at the optimized conditions, limits of detection, linear dynamic ranges, and enrichment factors were ranged from 0.9 to 2.2 μg L−1, 3.0 to 1023 μg L−1, and 20 ± 2 to 22 ± 2, respectively. After optimization, the method was successfully applied to determine Pb2+, Cu2+, Co2+, Ni2+, and Cr3+ in different biological (hair and nail), vegetable (coriander, parsley, and tarragon), fruit juice (apple, orange, and peach), and water (tap, mineral, and wastewater) samples. The proposed method was compared with two other IL-based and disperser solvent-free methods (i.e., IL-based air-assisted liquid-liquid microextraction and IL-based ultrasound-assisted emulsification microextraction) to demonstrate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stallings D, Vincent JB (2006) Chromium: a case study in how not to perform nutritional research. Curr Top Nutraceutical Res 4(2):89–111

    CAS  Google Scholar 

  2. Gallios GP, Vaclavikova M (2008) Removal of chromium (VI) from water streams: a thermodynamic study. Environ Chem Lett 6(4):235–240

    Article  CAS  Google Scholar 

  3. Yousefi SM, Shemirani F (2013) Selective and sensitive speciation analysis of Cr (VI) and Cr (III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid–liquid microextraction. J Hazard Mater 254:134–140

    Article  PubMed  Google Scholar 

  4. Oymak T, Tokalıoğlu Ş, Yılmaz V, Kartal Ş, Aydın D (2009) Determination of lead and cadmium in food samples by the coprecipitation method. Food Chem 113(4):1314–1317

    Article  CAS  Google Scholar 

  5. Li R, Chang X, Li Z, Zang Z, Hu Z, Li D, Tu Z (2011) Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb (II) ion in water samples. Microchim Acta 172(3–4):269–276

    Article  CAS  Google Scholar 

  6. Arain MB, Kazi TG, Jamali MK, Jalbani N, Afridi HI, Baig JA (2008) Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: a comparison with modified sequential extraction procedure. J Hazard Mater 154(1):998–1006

    Article  CAS  PubMed  Google Scholar 

  7. Rajabi M, Asemipour S, Barfi B, Jamali MR, Behzad M (2014) Ultrasound-assisted ionic liquid based dispersive liquid–liquid microextraction and flame atomic absorption spectrometry of cobalt, copper, and zinc in environmental water samples. J Mol Liq 194:166–171

    Article  CAS  Google Scholar 

  8. Asghari A, Mohammadi B (2014) Nano-alumina coated with sodium dodecyl sulfate and modified with 4-(2-pyridylazo) resorcinol for extraction of heavy metals in different matrixes. J Ind Eng Chem 20(3):824–829

    Article  CAS  Google Scholar 

  9. Yilmaz V, Arslan Z, Hazer O, Yilmaz H (2014) Selective solid phase extraction of copper using a new Cu (II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES). Microchem J 114:65–72

    Article  CAS  Google Scholar 

  10. Rajabi M, Mohammadi B, Asghari A, Barfi B, Behzad M (2013) Nano-alumina coated with SDS and modified with salicylaldehyde-5-sulfonate for extraction of heavy metals and their determination by anodic stripping voltammetry. J Ind Eng Chem 20:3737–3743

    Article  Google Scholar 

  11. Batista BL, Rodrigues JL, Nunes JA, Tormen L, Curtius AJ, Barbosa F Jr (2008) Simultaneous determination of Cd, Cu, Mn, Ni, Pb and Zn in nail samples by inductively coupled plasma mass spectrometry (ICP-MS) after tetramethylammonium hydroxide solubilization at room temperature: comparison with ETAAS. Talanta 76(3):575–579

    Article  CAS  PubMed  Google Scholar 

  12. Ozcan SG, Satiroglu N, Soylak M (2010) Column solid phase extraction of iron (III), copper (II), manganese (II) and lead (II) ions food and water samples on multi-walled carbon nanotubes. Food Chem Toxicol 48(8):2401–2406

    Article  CAS  PubMed  Google Scholar 

  13. Elci L, Soylak M, Dogan M (1992) Preconcentration of trace metals in river waters by the application of chelate adsorption on Amberlite XAD-4. Fresenius J Anal Chem 342(1–2):175–178

    Article  CAS  Google Scholar 

  14. Soylak M, Karatepe A, Elçi L, Doğan M (2003) Column preconcentration/separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using Amberlite XAD-1180. Turk J Chem 27(2):235–242

    CAS  Google Scholar 

  15. Barfi B, Asghari A, Rajabi M, Sabzalian S, Khanalipoor F, Behzad M (2015) Optimized syringe-assisted dispersive micro solid phase extraction coupled with microsampling flame atomic absorption spectrometry for the simple and fast determination of potentially toxic metals in fruit juice and bio-fluid samples. RSC Adv 5(40):31930–31941

    Article  CAS  Google Scholar 

  16. Arain SA, Kazi TG, Afridi HI, Ullah N, Arain MS, Panhwar AH (2015) Development of miniaturized solid phase microextraction of copper in serum using a micropipette tip in-syringe system combined with micro sampling flame atomic absorption spectrometry. Anal Methods 7(8):3431–3437

    Article  CAS  Google Scholar 

  17. Saeidi I, Hadjmohammadi MR, Peyrovi M, Iranshahi M, Barfi B, Babaei AB, Dust AM (2011) HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction. J Pharm Biomed Anal 56(2):419–422

    Article  CAS  PubMed  Google Scholar 

  18. Asghari A, Barfi B, Barfi A, Saeidi I, Ghollasi Moud F, Peyrovi M, Beig Babaei A (2014) Comparison between conventional solid phase extraction and its simplified method for HPLC determination of five flavonoids in orange, tangerine, and lime juice samples. Acta Chromatogr 26(1):157–175

    Article  CAS  Google Scholar 

  19. David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152(1):54–69

    Article  CAS  PubMed  Google Scholar 

  20. Hylton K, Mitra S (2007) Automated, on-line membrane extraction. J Chromatogr A 1152(1):199–214

    Article  CAS  PubMed  Google Scholar 

  21. Barfi B, Hadjmohammadi MR, Kasaai MR (2009) Determination of daidzein and genistein in soybean and its waste by matrix solid-phase dispersion extraction and HPLC. Monat Chem 140(10):1143–1148

    Article  CAS  Google Scholar 

  22. Barfi B, Asghari A, Rajabi M, Barfi A, Saeidi I (2013) Simplified miniaturized ultrasound-assisted matrix solid phase dispersion extraction and high performance liquid chromatographic determination of seven flavonoids in citrus fruit juice and human fluid samples: hesperetin and naringenin as biomarkers. J Chromatogr A 1311:30–40

    Article  CAS  PubMed  Google Scholar 

  23. Aziz-Zanjani MO, Mehdinia A (2013) Electrochemically prepared solid-phase microextraction coatings—a review. Anal Chim Acta 781:1–13

    Article  CAS  PubMed  Google Scholar 

  24. Feng J, Qiu H, Liu X, Jiang S (2013) The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC Trends Anal Chem 46:44–58

    Article  CAS  Google Scholar 

  25. Stanisz E, Werner J, Matusiewicz H (2013) Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with cold vapour generation atomic absorption spectrometry. Microchem J 110:28–35

    Article  CAS  Google Scholar 

  26. Rajabi M, Haji-Esfandiari S, Barfi B, Ghanbari H (2014) Ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid-phase microextraction method for simultaneous determination of anethole, estragole, and para-anisaldehyde in different plant extracts and human urine: a comparative study. Anal Bioanal Chem 406:4501–4512

    Article  CAS  PubMed  Google Scholar 

  27. Berton P, Martinis EM, Martinez LD, Wuilloud RG (2012) Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry. Anal Chim Acta 713:56–62

    Article  CAS  PubMed  Google Scholar 

  28. Tankiewicz M, Fenik J, Biziuk M (2011) Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review. Talanta 86:8–22

    Article  CAS  PubMed  Google Scholar 

  29. Barfi B, Asghari A, Rajabi M, Goochani Moghadama A, Mirkhani N, Ahmadi F (2015) Comparison of ultrasound-enhanced air-assisted liquid–liquid microextraction and low-density solvent-based dispersive liquid–liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. J Pharm Biomed Anal 111:297–305

    Article  CAS  PubMed  Google Scholar 

  30. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116(1):1–9

    Article  CAS  PubMed  Google Scholar 

  31. West A (2005) Promising a greener future. Chem World. 33–35

  32. Rajabi M, Ghanbari H, Barfi B, Asghari A, Haji-Esfandiari S (2014) Ionic liquid-based ultrasound-assisted surfactant-emulsified microextraction for simultaneous determination of three important flavoring compounds in plant extracts and urine samples. Food Res Int 62:761–770

    Article  CAS  Google Scholar 

  33. Anthemidis AN, Ioannou K-IG (2012) Sequential injection ionic liquid dispersive liquid–liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry. Anal Bioanal Chem 404(3):685–691

    Article  CAS  PubMed  Google Scholar 

  34. Ullah N, Kazi TG, Tuzen M (2015) Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry. Food Chem 172:161–165

    Article  Google Scholar 

  35. Farajzadeh MA, Mogaddam MRA (2012) Air-assisted liquid–liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Anal Chim Acta 728:31–38

    Article  CAS  PubMed  Google Scholar 

  36. Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190(1):27–38

    Article  CAS  PubMed  Google Scholar 

  37. Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80(5):2057–2062

    Article  CAS  PubMed  Google Scholar 

  38. Wu C, Liu N, Wu Q, Wang C, Wang Z (2010) Application of ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of some organophosphorus pesticides in water samples. Anal Chim Acta 679(1):56–62

    Article  CAS  PubMed  Google Scholar 

  39. You X, Xing Z, Liu F, Jiang N (2013) Air-assisted liquid–liquid microextraction used for the rapid determination of organophosphorus pesticides in juice samples. J Chromatogr A 1311:41–47

    Article  CAS  PubMed  Google Scholar 

  40. Farajzadeh MA, Khoshmaram L (2013) Air-assisted liquid–liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples. Food Chem 141(3):1881–1887

    Article  CAS  PubMed  Google Scholar 

  41. Farajzadeh MA, Nouri N (2013) Simultaneous derivatization and air-assisted liquid–liquid microextraction of some aliphatic amines in different aqueous samples followed by gas chromatography-flame ionization detection. Anal Chim Acta 775:50–57

    Article  CAS  PubMed  Google Scholar 

  42. Farajzadeh MA, Khosrowshahi EM, Khorram P (2013) Simultaneous derivatization and air‐assisted liquid–liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection. J Sep Sci 36(21–22):3571–3578

    Article  CAS  PubMed  Google Scholar 

  43. Yang M, Xi X, Yang X, Bai L, Lu R, Zhou W, Zhang S, Gao H (2015) Determination of benzoylurea insecticides in environmental water and honey samples using ionic-liquid-mingled air-assisted liquid–liquid microextraction based on solidification of floating organic droplets. RSC Adv 5(32):25572–25580

    Article  CAS  Google Scholar 

  44. Rajabi M, Barfi B, Asghari A, Najafi F, Aran R (2014) Hybrid amine-functionalized titania/silica nanoparticles for solid-phase extraction of lead, copper, and zinc from food and water samples: kinetics and equilibrium studies. Food Anal Methods 8(4):815–824

    Article  Google Scholar 

  45. Ghaedi M, Niknam K, Shokrollahi A, Niknam E, Rajabi HR, Soylak M (2008) Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina. J Hazard Mater 155(1):121–127

    Article  CAS  PubMed  Google Scholar 

  46. Duran C, Senturk HB, Elci L, Soylak M, Tufekci M (2009) Simultaneous preconcentration of Co(II), Ni(II), Cu(II), and Cd(II) from environmental samples on Amberlite XAD-2000 column and determination by FAAS. J Hazard Mater 162(1):292–299

    Article  CAS  PubMed  Google Scholar 

  47. Shah F, Kazi TG, Naeemullah AHI, Soylak M (2012) Temperature controlled ionic liquid-dispersive liquid phase microextraction for determination of trace lead level in blood samples prior to analysis by flame atomic absorption spectrometry with multivariate optimization. Microchem J 101:5–10

    Article  CAS  Google Scholar 

  48. Duran C, Gundogdu A, Bulut VN, Soylak M, Elci L, Sentürk HB, Tüfekci M (2007) Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). J Hazard Mater 146(1–2):347–355

    Article  CAS  PubMed  Google Scholar 

  49. Mahpishanian S, Shemirani F (2010) Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry. Talanta 82(2):471–476

    Article  CAS  PubMed  Google Scholar 

  50. Jamali MR, Firouzjah A, Rahnama R (2013) Solvent-assisted dispersive solid phase extraction. Talanta 116:454–459

    Article  CAS  PubMed  Google Scholar 

  51. Aydin F, Yilmaz E, Soylak M (2015) Supramolecular solvent-based dispersive liquid–liquid microextraction of copper from water and hair samples. RSC Adv 5(50):40422–40428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Semnan University Research Council for the financial support of this work.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Rajabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barfi, B., Rajabi, M. & Asghari, A. A Simple Organic Solvent-Free Liquid-Liquid Microextraction Method for the Determination of Potentially Toxic Metals as 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol Complex from Food and Biological Samples. Biol Trace Elem Res 170, 496–507 (2016). https://doi.org/10.1007/s12011-015-0489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0489-y

Keywords

Navigation