Skip to main content
Log in

Determination of the Elemental Composition of Ayahuasca and Assessments Concerning Consumer Safety

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The consumption of ayahuasca, a brew prepared from the decoction of two Amazon plants, has increased worldwide in the last decades. This fact raised questions about the safety in its oral administration. In this sense, information concerning the chemical composition of ayahuasca is essential to find a comprehensive reply. Therefore, the aim of this study consisted of determining the elemental composition of ready-to-consume ayahuasca samples produced in Brazil, in order to evaluate the safety in the oral administration of this beverage, considering recommended macroelement and microelement daily intake values and the permitted limits of potentially toxic heavy metals. Real ayahuasca samples, obtained from Brazilian religious groups, underwent microwave radiation-assisted acid decomposition, and Li, Al, Mn, Fe, Co, Cu, Zn, As, Cd, Hg, and Pb concentrations were determined by ICP-MS, while Ca, Mg, K, and P concentrations were determined by ICP OES. Method accuracy was assessed by analyte addition and recovery assays. Recoveries ranged from 80 and 118%, indicating satisfactory accuracy. Limit of detection (LOD) and limit of quantification (LOQ) values were lower than 1 mg L−1 for the macroelements determined by ICP OES and lower than 3.5 μg L−1 for the microelements determined by ICP-MS. The concentrations of the elements determined in the samples were lower than the recommended or tolerable limits; hence, it is possible to affirm that ayahuasca presents safe administration levels regarding total elemental content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Callaway JC, Grob CS (1998) Ayahuasca preparations and serotonin reuptake inhibitors: a potential combination for severe adverse interactions. J Psychoactive Drugs 30(4):367–369. https://doi.org/10.1080/02791072.1998.10399712

    Article  CAS  PubMed  Google Scholar 

  2. McKenna DJ, Towers GHN, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and β-carboline constituents of Ayahuasca. J Ethnopharmacol 10(2):195–223. https://doi.org/10.1016/0378-8741(84)90003-5

    Article  CAS  PubMed  Google Scholar 

  3. Labate BC, MacRae E (2016) Ayahuasca, ritual and religion in Brazil. Routledge, pp 1–135

  4. Domínguez-Clavé E, Soler J, Elices M, Pascual JC, Álvarez E, Revenga MF, Friedlander P, Feilding A, Riba J (2016) Ayahuasca: pharmacology, neuroscience and therapeutic potential. Brain Res Bull 126(Pt 1):89–101. https://doi.org/10.1016/j.brainresbull.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  5. McKenna DJ (2004) Clinical investigations of the therapeutic potential of Ayahuasca: rationale and regulatory challenges. Pharmacol Ther 102(2):111–129. https://doi.org/10.1016/J.PHARMTHERA.2004.03.0

    Article  CAS  PubMed  Google Scholar 

  6. Barbosa PCR, Mizumoto S, Bogenschutz MP, Strassman RJ (2012) Health status of Ayahuasca users. Drug Test Anal 4(7–8):601–609. https://doi.org/10.1002/dta.1383

    Article  CAS  PubMed  Google Scholar 

  7. Bouso JC, González D, Fondevila S, Cutchet M, Fernández X, Barbosa PCR, Alcázar-Córcoles MÁ, Araújo WS, Barbanoj MJ, Fábregas JM, Riba J (2012) Personality, psychopathology, life attitudes and neuropsychological performance among ritual users of Ayahuasca: a longitudinal study. PLoS One 7(8):1–13. https://doi.org/10.1371/journal.pone.0042421

    Article  CAS  Google Scholar 

  8. Santos RG (2013) Safety and side effects of Ayahuasca in humans—an overview focusing on developmental toxicology. J Psychoactive Drugs 45(1):68–78. https://doi.org/10.1080/02791072.2013.763564

    Article  PubMed  Google Scholar 

  9. Grob CS, McKenna DJ, Callaway JC, Brito GS, Neves ES, Oberlaender G, Saide OL, Labigalini E, Tacla C, Miranda CT, Strassman RJ, Boone KB (1996) Human psychopharmacology of Hoasca, a plant hallucinogen used in ritual context in Brazil. J Nerv Ment Dis 184(2):86–94

    Article  CAS  Google Scholar 

  10. Doering-Silveira E, Lopez E, Grob CS (2005) Ayahuasca in adolescence: a neuropsychological assessment. J Psychoactive Drugs 37(2):123–128. https://doi.org/10.1080/02791072.2005.10399791

    Article  PubMed  Google Scholar 

  11. Osório FL, Sanches RF, Macedo LR, Santos RG, Maia-de-Oliveira JP, Wichert-Ana L, Araujo DB, Riba J, Crippa JA, Hallak JE (2015) Antidepressant effects of a single dose of Ayahuasca in patients with recurrent depression: a preliminary report. Rev Bras Psiquiatr 37(1):13–20. https://doi.org/10.1590/1516-4446-2014-1496

    Article  Google Scholar 

  12. Sobiecki JF (2013) An account of healing depression using Ayahuasca plant teacher medicine in a Santo Daime ritual. Indo-Pac J Phenomenol 13(1):1–10. https://doi.org/10.2989/IPJP.2013.13.1.7.1173

    Article  Google Scholar 

  13. Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135(2):494–501. https://doi.org/10.1016/J.FOODCHEM.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Machado MC, Bruce-Mensah A, Whitmire M, Rizvi AA (2005) Hypercalcemia associated with calcium supplement use: prevalence and characteristics in hospitalized patients. J Clin Med 4(3):414–424. https://doi.org/10.3390/jcm4030414

    Article  CAS  Google Scholar 

  15. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, Washington, DC. https://doi.org/10.17226/10026

    Book  Google Scholar 

  16. Santamaria AB, Sulsky SI (2010) Risk assessment of an essential element: manganese. J Toxicol Environ Health A 73:128–155. https://doi.org/10.1080/15287390903337118

    Article  CAS  PubMed  Google Scholar 

  17. Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128(4):484–500

    CAS  PubMed  Google Scholar 

  18. Andruska KM, Racette BA (2015) Neuromythology of Manganism. Curr Epidemiol Rep 2(2):143–148. https://doi.org/10.1007/s40471-015-0040-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans - a review of the potential sources and systemic health effects. Toxicology 387:43–56. https://doi.org/10.1016/j.tox.2017.05.015

    Article  CAS  Google Scholar 

  20. Barceloux DG, Barceloux D (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–216. https://doi.org/10.1081/CLT-100102420

    Article  CAS  PubMed  Google Scholar 

  21. MacPherson A, Dixon J (2003) Cobalt. In: Caballero B, Finglas P, Toldra F (eds) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, pp 1431–1436. https://doi.org/10.1016/B0-12-227055-X/00259-5

  22. Goyer RA (1997) Toxic and essential metal interaction. Annu Rev Nutr 17(1):37–50. https://doi.org/10.1146/annurev.nutr.17.1.37

    Article  CAS  PubMed  Google Scholar 

  23. Tokalıoğlu Ş (2012) Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem 134(4):2504–2508. https://doi.org/10.1016/J.FOODCHEM.2012.04.093

    Article  PubMed  Google Scholar 

  24. AOAC. Association of Official Agricultural Chemists (2002) Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. Rockville, MD

  25. FDA. Food and Drug Administration (2016) Food labeling: revision of the nutrition and supplement facts labels. Available on http://federalregister.gov/a/2016-11867. Accessed on 23.04.2020

  26. WHO. World Health Organization (2004) Manganese and its compounds: environmental aspects. WHO, Geneva

    Google Scholar 

  27. Lima PDL, Vasconcellos MC, Montenegro RC, Bahia MO, Costa ET, Antunes LM, Burbano RR (1999) Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: a review of the literature. Hum Exp Toxicol 30(10):1435–1444. https://doi.org/10.1177/0960327110396531

    Article  CAS  Google Scholar 

  28. Barceloux DG (1999) Manganese. J Toxicol Clin Toxicol 37:293–307. https://doi.org/10.1081/clt-100102427

    Article  CAS  PubMed  Google Scholar 

  29. National Research Council (1989) Subcommittee on the Tenth Edition of the RDAs. Recommended dietary allowances, 10th edn. National Academy Press, Washington DC, pp 267–268

    Google Scholar 

  30. WHO. World Health Organization (2006) Cobalt and inorganic cobalt compounds. WHO, Geneva

    Google Scholar 

  31. Unice KM, Kerger BD, Paustenbach DJ, Finley BL, Tvermoes BE (2014) Refined biokinetic model for humans exposed to cobalt dietary supplements and other sources of systemic cobalt exposure. Chem Biol Interact 216(1):53–74. https://doi.org/10.1016/j.cbi.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  32. WHO. World Health Organization (2011) Evaluation of certain food additives and contaminants. In: Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, Geneva

  33. WHO. World Health Organization (2007) Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. WHO, Geneva

    Google Scholar 

  34. Goedert M, Spillantini MG (2006) A century of Alzheimer's disease. Science 314:777–781. https://doi.org/10.1126/science.1132814

    Article  CAS  PubMed  Google Scholar 

  35. Aguilar F, Autrup H, Barlow S et al (2008) Safety of aluminium from dietary intake—scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). Eur Food Saf Authority J 754:1–34. https://doi.org/10.2903/j.efsa.2008.754

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Marco Aurélio Zezzi Arruda (Institute of Chemistry, UNICAMP, Brazil) for facilitating the access to the instrumentation employed in this work. We are also grateful to the UDV for providing the ayahuasca samples.

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (grant number 2018/01525-3) and INCT of Bioanalytics (FAPESP 2014/50867-3 and CNPq 465389/2014-7 grant numbers) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Sussulini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, I.C., Tófoli, L.F. & Sussulini, A. Determination of the Elemental Composition of Ayahuasca and Assessments Concerning Consumer Safety. Biol Trace Elem Res 199, 1179–1184 (2021). https://doi.org/10.1007/s12011-020-02226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02226-4

Keywords

Navigation