Skip to main content

Advertisement

Log in

Fluoride and Biological Mineralization II: Mechanism of Action of Fluoride to Influence the Collagen-Induced In Vitro Mineralization and Demineralization Reactions

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluoride had been shown to inhibit collagen-induced in vitro mineralization without affecting demineralization at its lower concentrations (> 1X10-5 and < 1X10-4 M) and stimulate mineralization in addition to inhibiting demineralization at its concentration > 1X10-4 M. The present studies were designed to investigate the mechanism by which fluoride acts to produce these concentration-dependent effects. The inhibition of mineralization occurring at the lower concentrations of fluoride was found to be due to the inactivation of the specific calcium binding sites of collagen involved in initiating the process of mineralization. Stimulation of mineralization obtained at the higher concentrations of fluoride was found to be due to the activation of the specific phosphate-binding sites of the collagen and the formation of a relatively less soluble and highly stable fluorapatite instead of hydroxyapatite. At its higher concentrations, fluoride was also found to inhibit demineralization by binding to the mineral phase associated with collagen. A model has been presented to explain the mechanisms whereby fluoride may act to produce the above observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V (2016) Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 11:4743–4763. https://doi.org/10.2147/IJN.S107624

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl 41(17):3130–3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1

  3. KokuboT (2008) Bioceramics and Their Clinical Applications (1st ed.). Woodhead Publishing Limited United Kingdom, Cambridge.  https://www.elsevier.com/books/bioceramics-and-their-clinical-applications/kokubo/978-1-84569-204-9

  4. Margolis HC, Kwak SY, Yamazaki H (2014) Role of mineralization inhibitors in the regulation of hard tissue biomineralization: relevance to initial enamel formation and maturation. Front Physiol 5:339. https://doi.org/10.3389/fphys.2014.00339

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gelse K, Pöschl E, Aigner T (2003) Collagens - structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  6. Glimcher MJ (1959) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31(2):359–393

    Article  CAS  Google Scholar 

  7. Singh SP, Singh R, Jethi RK (1982) Kinetics of in vitro aorta mineralization. Indian J Exp Biol 20(9):691–695

    CAS  PubMed  Google Scholar 

  8. Talwar HS, Jethi RK (1978) Role of collagen in ion uptake & exchange reactions. Indian J Exp Biol 16(2):187–190

    CAS  PubMed  Google Scholar 

  9. Jethi RK, Inlow CW, Wadkins CL (1970) Studies of the mechanism of biological calcification. Calcif Tissue Res 6(1):81–92

    Article  CAS  PubMed  Google Scholar 

  10. Jethi RK, Wadkins CL (1971) Studies of the mechanism of biological calcification. Calcif Tissue Res 7(1):277–289

    Article  CAS  PubMed  Google Scholar 

  11. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317(Pt 1):59–64. https://doi.org/10.1042/bj3170059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9(12):1004–1009. https://doi.org/10.1038/nmat2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alliston T (2014) Biological Regulation of Bone Quality. Curr Osteoporos Rep 12(3):366–375. https://doi.org/10.1007/s11914-014-0213-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P et al (2012) The predominant role of collagenin the nucleation, growth, structureand orientationofbone apatite. Nat Mater 11(8):724–733. https://doi.org/10.1038/nmat3362

    Article  CAS  PubMed  Google Scholar 

  15. Jethi RK, Chander L, Singh J (1977) Kinetic evidence for a step-wise process in collagen-induced in vitro calcification. Indian J Exp Biol 15(1):35–39

    CAS  PubMed  Google Scholar 

  16. Blumenthal NC (1989) Mechanisms of inhibition of calcification. Clin Orthop Relat Res NA(247):279–289

    Google Scholar 

  17. Gupta LC, Singla SK, Tandon C, Jethi RK (2004) Mg2+: a potent inhibitor of collagen-induced in vitro mineralization. Magnes Res 17(2):67–71

    CAS  PubMed  Google Scholar 

  18. Tandon CD, Forouzandeh M, Aggarwal S, Jethi RK (1997) Inhibitors of in vitro mineralization from flexor tendons of rabbits and their role in biological mineralization. Mol Cell Biochem 171(1–2):29–35

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal S, Tandon CD, Forouzandeh M, Singla SK, Kiran R, Jethi RK (2000) Role of biomolecules from human renal stone matrix on COM crystal growth. Mol Cell Biochem 210(1–2):109–119

    Article  CAS  PubMed  Google Scholar 

  20. Moghadam MF, Tandon C, Aggarwal S, Singla SK, Singh SK, Sharma SK, Varshney GC, Jethi RK (2003) Concentration of a potent calcium oxalate monohydrate crystal growth inhibitor in the urine of normal persons and kidney stone patients by ELISA-based assay system employing monoclonal antibodies. J Cell Biochem 90(6):1261–1275

    Article  CAS  PubMed  Google Scholar 

  21. McGaughey C (1983) Binding of polyphosphates and phosphonates to hydroxyapatite, subsequent hydrolysis, phosphate exchange and effects on demineralization, mineralization and microcrystal aggregation. Caries Res 17(3):229–241

    Article  CAS  PubMed  Google Scholar 

  22. Kakkar M, Kapoor V, Singla SK, Jethi RK (2020) Fluoride and Biological Calcification I: Effect of Fluoride on Collagen-Induced In Vitro Mineralization and Demineralization Reactions. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02340-3

    Article  PubMed  Google Scholar 

  23. Baginski ES, Marie SS, Clark WL, Zak B (1973) Direct microdetermination of serum calcium. Clin Chim Acta 46(1):46–54

    Article  Google Scholar 

  24. Amador E, Urban J (1972) Simplified serum phosphorus analyses by continuous-flow ultraviolet spectrophotometry. Clin Chem 18(7):601–604

    Article  CAS  PubMed  Google Scholar 

  25. Kirk KL (1991) Biochemistry of inorganic fluoride. In: Biochemistry of the elemental halogens and inorganic halides. Springer US, Boston, pp 19–68

    Chapter  Google Scholar 

  26. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the Influence of Genetics. J Dent Res 90(5):552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vieira A, Hancock R, Dumitriu M, Schwartz M, Limeback H, Grynpas M (2005) How does fluoride affect dentin microhardness and mineralization? J Dent Res 84(10):951–957

    Article  CAS  PubMed  Google Scholar 

  28. Aoba T (1997) The effect of fluoride on apatite structure and growth. Crit Rev Oral Biol Med 8(2):136–153

    Article  CAS  PubMed  Google Scholar 

  29. Kanduti D, Sterbenk P, Artnik B (2016) Fluoride: a review of use and effects on health. Mater Sociomed 28(2):133–137. https://doi.org/10.5455/msm.2016.28.133-137

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clark MB, Slayton RL (2014) Fluoride use in caries prevention in the primary care setting. Pediatrics 134(3):626–633. https://doi.org/10.1542/peds.2014-1699

    Article  PubMed  Google Scholar 

  31. Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 2012:1–16

    Article  Google Scholar 

  32. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20(3):350–355. https://doi.org/10.4103/0970-9290.57379

    Article  PubMed  Google Scholar 

  33. Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Lett 223(2):236–251. https://doi.org/10.1016/j.toxlet.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  34. Qin X, Wang S, Yu M, Zhang L, Li X, Zuo Z et al (2009) Child skeletal fluorosis from indoor burning of coal in southwestern China. J Environ Public Health 2009:969764. https://doi.org/10.1155/2009/969764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krishnamachari KA (1986) Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease. Prog Food Nutr Sci 10(3–4):279–314

    CAS  PubMed  Google Scholar 

  36. Tomoaia G, Pasca RD (2015) On the Collagen Mineralization. A Review. Clujul Med 88(1):15–22. https://doi.org/10.15386/cjmed-359

    Article  PubMed  Google Scholar 

  37. Heaney RP, Recker RR, Watson P, Lappe JM (2010) Phosphate and carbonate salts of calcium support robust bone building in osteoporosis. Am J Clin Nutr 92(1):101–105. https://doi.org/10.3945/ajcn.2009.29085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Indebted to Mr. K. K. Maheshwari for initiating the work on the project and standardizing the various techniques. Grateful to Department of Biochemistry (PU, Chandigarh and HIMS, Dehradun) for providing required funds and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Kakkar.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkar, M., Kapoor, V., Singla, S.K. et al. Fluoride and Biological Mineralization II: Mechanism of Action of Fluoride to Influence the Collagen-Induced In Vitro Mineralization and Demineralization Reactions. Biol Trace Elem Res 199, 4145–4153 (2021). https://doi.org/10.1007/s12011-020-02544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02544-7

Keywords

Navigation