Skip to main content
Log in

Zinc-Enriched Yeast May Improve Spermatogenesis by Regulating Steroid Production and Antioxidant Levels in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) is an essential nutrient for the human body. This nutrient is involved in numerous physiological functions and plays an important role in spermatogenesis. Zn-enriched yeast (ZnY) is considered a Zn supplement with high bioavailability and is widely used as a functional food. However, the effect of ZnY on male reproductive function remains unclear. This study aimed to investigate the beneficial effects of ZnY on the treatment of male spermatogenesis disorders. The spermatogenic dysfunctional mice were established by using cyclophosphamide (CP). CP was administered in saline at a dose of 50 mg/kg bw/day for 5 days by intraperitoneal injection (i.p.). Then, ZnY was orally supplemented at the dose levels of 2, 4, and 8 mg Zn/kg bw/day for 30 days. CP significantly decreased the sperm density and viability, testicular marker enzymes, serum testosterone, follicular stimulating hormone (FSH), and luteinizing hormone (LH). ZnY supplementation significantly improved these sperm parameters and hormone levels. Additionally, ZnY decreased the CP-induced lipid peroxidation and increased the glutathione levels. Moreover, ZnY increased the gene expression of anti-apoptotic proteins and steroid synthetase in mouse testes. The low-dose ZnY supplementation has a better effect on improving spermatogenesis, while the other two groups are less beneficial roles possibly due to excessive Zn intake. The present results suggest that appropriate ZnY can act as an accessory factor to improve steroid production and antioxidant levels in spermatogenic dysfunction mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data presented in the main manuscript.

References

  1. Jetter A, Kullak-Ublick GA (2020) Drugs and hepatic transporters: a review. Pharmacol Res 154:104234. https://doi.org/10.1016/j.phrs.2019.04.018

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrin 13. https://doi.org/10.1186/s12958-015-0032-1

  3. Krausz C, Riera-Escamilla A (2018) Genetics of male infertility. Nat Rev Urol 15:369–384. https://doi.org/10.1038/s41585-018-0003-3

    Article  CAS  PubMed  Google Scholar 

  4. Tournaye H, Krausz C, Oates RD (2017) Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol 5:544–553. https://doi.org/10.1016/S2213-8587(16)30040-7

    Article  PubMed  Google Scholar 

  5. Salas-Huetos A, Rosique-Esteban N, Becerra-Tomas N, Vizmanos B, Bullo M, Salas-Salvado J (2018) The effect of nutrients and dietary supplements on sperm quality parameters: a systematic review and meta-analysis of randomized clinical trials. Adv Nutr 9:833–848. https://doi.org/10.1093/advances/nmy057

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, Sun B, Wang Q, Wu Q, Li L (2016) Zinc levels in seminal plasma and their correlation with male infertility: a systematic review and meta-analysis. Sci Rep 6:22386. https://doi.org/10.1038/srep22386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hidiroglou M, Knipfel JE (1984) Zinc in mammalian sperm: a review. J Dairy Sci 67:1147–1156. https://doi.org/10.1093/oxfordjournals.humrep.a019138

    Article  CAS  PubMed  Google Scholar 

  8. Lewis-Jones DI, Aird IA, Biljan MM, Kingsland CR (1996) Effects of sperm activity on zinc and fructose concentrations in seminal plasma. Hum Reprod 11:2465–2467. https://doi.org/10.1093/oxfordjournals.humrep.a019138

    Article  CAS  PubMed  Google Scholar 

  9. Merrells KJ, Blewett H, Jamieson JA, Taylor CG, Suh M (2009) Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats. Br J Nutr 102:226–232. https://doi.org/10.1017/S0007114508159037

    Article  CAS  PubMed  Google Scholar 

  10. Nitrayova S, Windisch W, von Heimendahl E, Muller A, Bartelt J (2012) Bioavailability of zinc from different sources in pigs. J Anim Sci 90(Suppl 4):185–187. https://doi.org/10.2527/jas.53895

    Article  PubMed  Google Scholar 

  11. Zhang SQ, Yu XF, Zhang HB, Peng N, Chen ZX, Cheng Q, Zhang XL, Cheng SH, Zhang Y (2018) Comparison of the oral absorption, distribution, excretion, and bioavailability of zinc sulfate, zinc gluconate, and zinc-enriched yeast in rats. Mol Nutr Food Res 62:e1700981. https://doi.org/10.1002/mnfr.201700981

    Article  CAS  PubMed  Google Scholar 

  12. Zhang S, Zhang Y, Peng N, Zhang H, Yao J, Li Z, Liu L (2014) Pharmacokinetics and biodistribution of zinc-enriched yeast in rats. ScientificWorldJournal 2014:217142. https://doi.org/10.1155/2014/217142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tompkins TA, Renard NE, Kiuchi A (2007) Clinical evaluation of the bioavailability of zinc-enriched yeast and zinc gluconate in healthy volunteers. Biol Trace Elem Res 120:28–35. https://doi.org/10.1007/s12011-007-0072-2

    Article  CAS  PubMed  Google Scholar 

  14. Fraiser LH, Kanekal S, Kehrer JP (1991) Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs 42:781–795. https://doi.org/10.2165/00003495-199142050-00005

    Article  CAS  PubMed  Google Scholar 

  15. Lu WP, Mei XT, Wang Y, Zheng YP, Xue YF, Xu DH (2015) Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ Toxicol Pharmacol 39:515–524. https://doi.org/10.1016/j.etap.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  16. Cai L, Hales BF, Robaire B (1997) Induction of apoptosis in the germ cells of adult mal-e rats after exposure to cyclophosphamide. Biol Reprod 56:1490–1497. https://doi.org/10.1095/biolreprod56.6.1490

    Article  CAS  PubMed  Google Scholar 

  17. Tripathi DN, Jena GB (2009) Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and DNA damage: a study in mice. Chem Biol Interact 180:398–406. https://doi.org/10.1016/j.cbi.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  18. Maremanda KP, Khan S, Jena G (2014) Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2. Biochem Biophys Res Commun 445:591–596. https://doi.org/10.1016/j.bbrc.2014.02.055

    Article  CAS  PubMed  Google Scholar 

  19. Yuan D, Wang H, He H, Jia L, He Y, Wang T, Zeng X, Li Y, Li S, Zhang C (2014) Protective effects of total flavonoids from Epimedium on the male mouse reproductive system against cyclophosphamide-induced oxidative injury by up-regulating the expressions of SOD3 and GPX1. Phytother Res 28:88–97. https://doi.org/10.1002/ptr.4956

    Article  CAS  PubMed  Google Scholar 

  20. National Health Commission of the People's Republic of China (2017) Dietary nutrient reference intake of Chinese residents. http://www.nhc.gov.cn/Accessed 8 April 2020

  21. Zhang S, Zhang H, Cheng Q, Zhu Y, Xia C, Zhu Y, Zhang Y (2019) Zinc-enriched yeast improves learning and memory impairments in zinc-deficient rats. Biol Trace Elem Res 189:180–185. https://doi.org/10.1007/s12011-018-1466-z

    Article  CAS  PubMed  Google Scholar 

  22. Spiers DE, Candas V (1984) Relationship of skin surface area to body mass in the immature rat: a reexamination. J Appl Physiol: Respiratory, Environ Exercise Physiol 56:240. https://doi.org/10.1152/jappl.1984.56.1.240

    Article  CAS  Google Scholar 

  23. Chen T, Hu W, He H, Gong Z, Wang J, Yu X, Ai T, Zhan L (2013) A study on the mechanism of cinobufagin in the treatment of paw cancer pain by modulating localβ-endorphin expression in vivo. Evid-Based Compl Alt 2013:1–9. https://doi.org/10.1155/2013/851256

    Article  Google Scholar 

  24. Eliasson R, Treichl L (1971) Supravital staining of human spermatozoa. Fertil Steril 22:134–137

    Article  CAS  Google Scholar 

  25. Wyrobek AJ, Bruce WR (1975) Chemical induction of sperm abnormalities in mice. Proc Natl Acad Sci U S A 72:4425–4429. https://doi.org/10.1016/s0015-0282(16)38049-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnsen SG (1970) Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1:2–25. https://doi.org/10.1159/000178170

    Article  CAS  PubMed  Google Scholar 

  27. Dere E, Anderson LM, Hwang K, Boekelheide K (2013) Biomarkers of chemotherapy-induced testicular damage. Fertil Steril 100:1192–1202. https://doi.org/10.1016/j.fertnstert.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira M, Matos RC, Oliveira H, Nunes B, Pereira MDL (2012) Impairment of mice sp-ermatogenesis by sodium arsenite. Hum Exp Toxicol 31:290–302. https://doi.org/10.1177/0960327111405862

    Article  CAS  PubMed  Google Scholar 

  29. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18. https://doi.org/10.1016/j.jtemb.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  30. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  CAS  PubMed  Google Scholar 

  31. Schlappack OK, Delic JI, Harwood JR, Stanley JA (1988) Protection from radiation-induced damage to spermatogenesis in the androgen pretreated rat. Radiother Oncol 12:219–224. https://doi.org/10.1016/0167-8140(88)90264-2

    Article  CAS  PubMed  Google Scholar 

  32. Allouche-Fitoussi D, Breitbart H (2020) The role of zinc in male fertility. Int J Mol Sci 21. https://doi.org/10.3390/ijms21207796

  33. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril 92:1520–1524. https://doi.org/10.1016/j.fertnstert.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  34. Badkoobeh P, Parivar K, Kalantar SM, Hosseini SD, Salabat A (2013) Effect of nano-zinc oxide on doxorubicin- induced oxidative stress and sperm disorders in adult male Wistar rats. Iran J Reprod Med 11:355–364

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E (2016) Influence of long-term zinc administration on spatial learning and exploratory activity in rats. Biol Trace Elem Res 172:408–418. https://doi.org/10.1007/s12011-015-0597-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hodgen GD, Sherins RJ (1973) Enzymes as markers of testicular growth and development in the rat. Endocrinology 93:985–989. https://doi.org/10.1210/endo-93-4-985

    Article  CAS  PubMed  Google Scholar 

  37. Sadik NA (2008) Effects of diallyl sulfide and zinc on testicular steroidogenesis in cadmium-treated male rats. J Biochem Mol Toxicol 22:345–353. https://doi.org/10.1002/jbt.20247

    Article  CAS  PubMed  Google Scholar 

  38. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91 Spec No:179-194. https://doi.org/10.1093/aob/mcf118

  39. Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol 636:154–171. https://doi.org/10.4161/oxim.1.1.6843

    Article  CAS  PubMed  Google Scholar 

  40. Lu WP, Mei XT, Wang Y, Zheng YP, Xue YF, Xu DH (2015) Zn(II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ Toxicol Pharmacol 39:515–524. https://doi.org/10.1016/j.etap.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  41. Zhu B, Zheng YF, Zhang YY, Cao YS, Zhang L, Li XG, Liu T, Jiao ZZ, Wang Q, Zhao ZG (2015) Protective effect of L-carnitine in cyclophosphamide-induced germ cell apoptosis. J Zhejiang Univ Sci B 16:780–787. https://doi.org/10.1631/jzus.B1500015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumari D, Nair N, Bedwal RS (2011) Testicular apoptosis after dietary zinc deficiency: ultrastructural and TUNEL studies. Syst Biol Reprod Med 57(5):233–243. https://doi.org/10.3109/19396368.2011.584500

    Article  CAS  PubMed  Google Scholar 

  43. Pourhassanali N, Roshan-Milani S, Kheradmand F, Motazakker M, Bagheri M, Saboory E (2016) Zinc attenuates ethanol-induced Sertoli cell toxicity and apoptosis through caspase-3 mediated pathways. Reprod Toxicol 61:97–103. https://doi.org/10.1016/j.reprotox.2016.03.041

    Article  CAS  PubMed  Google Scholar 

  44. Oyagbemi AA, Omobowale TO, Saba AB, Adedara IA, Olowu ER, Akinrinde AS, Dada RO (2016) Gallic acid protects against cyclophosphamide-induced toxicity in testis and epididymis of rats. Andrologia 48:393–401. https://doi.org/10.1111/and.12459

    Article  CAS  PubMed  Google Scholar 

  45. Carreau S, Bourguiba S, Lambard S, Galeraud-Denis I, Genissel C, Levallet J (2002) Reproductive system: aromatase and estrogens. Mol Cell Endocrinol 193:137–143. https://doi.org/10.1016/s0303-7207(02)00107-7

    Article  CAS  PubMed  Google Scholar 

  46. Joshi SC, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol Ind Health 23:439–444. https://doi.org/10.1177/0748233707080908

    Article  CAS  PubMed  Google Scholar 

  47. Omura T, Morohashi K (1995) Gene regulation of steroidogenesis. J Steroid Biochem Mol Biol 53:19–25. https://doi.org/10.1016/0960-0760(95)00036-y

    Article  CAS  PubMed  Google Scholar 

  48. Ihsan A, Wang X, Liu Z, Wang Y, Huang X, Liu Y, Yu H, Zhang H, Li T, Yang C, Yuan Z (2011) Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 252:281–288. https://doi.org/10.1016/j.chemosphere.2020.125828

    Article  CAS  PubMed  Google Scholar 

  49. Gao HT, Di QN, Qian LL, Lu L, Li RX, Cao WX, Xu Q (2020) Zinc supplement ameli-orates phthalates-induced reproductive toxicity in male rats. Chemosphere 246:125828. https://doi.org/10.1016/j.chemosphere.2020.125828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of Professor CH. Wang’s laboratory of the School of Health Sciences in Wuhan University, for their generous assistances.

Funding

This study was supported by grants from the Angel Nutritech Nutrition Fund (Grant NO. AF2019004).

Author information

Authors and Affiliations

Authors

Contributions

Chunhong Wang and Zhaoyu Zhang designed this study. Ziqiong Wang, Duanya Liu, Haitao Ma, and Lei Wang raised the animals. Peng Cheng and Zhaoyu Zhang carried out index detection and wrote the first draft. Chunhong Wang, Qian Cheng, and Youjiao Liu edited the final paper. All authors approved the final version.

Corresponding author

Correspondence to Chunhong Wang.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Animal Care and Use Committee of Animal Experiment Center of Wuhan University (IACUC) (Permit No. WP2020-08053).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cheng, Q., Liu, Y. et al. Zinc-Enriched Yeast May Improve Spermatogenesis by Regulating Steroid Production and Antioxidant Levels in Mice. Biol Trace Elem Res 200, 3712–3722 (2022). https://doi.org/10.1007/s12011-021-02970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02970-1

Keywords

Navigation