Skip to main content
Log in

Effects of Different Levels of Dietary Zinc-Threonine and Zinc Oxide on the Zinc Bioavailability, Biological Characteristics and Performance of Honey Bees (Apis mellifera L.)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The experiment was conducted to investigate the effect of supplementary different levels of zinc-threonine (Zn-Thr) and zinc oxide (ZnO) on the Zn bioavailability, biological characteristics and performance of honey bees (Apis mellifera L.). The experiments were carried out with seven treatments in a completely randomized design with five replicates for each treatment. During the experiment, groups were fed a basal diet without extra zinc (10.4 mg Zn/kg diet), and it was used as the control diet and 3 levels of 20, 40, and 60 mg Zn/kg were added to the diet by ZnO and Zn-Thr sources. The results showed that different levels of organic Zn significantly increased Zn and Fe content in the carcass of caged bees compared to different levels of inorganic Zn and control groups. Also, honey bees fed with levels of 40 and 60 mg Zn/kg Zn-Thr supplementation significantly had lower Malondialdehyde (MDA) concentration and higher ash content, protein content, superoxide dismutase (SOD) activity in their tissues. In addition, they showed more life span, feed intake, population, brood rearing, and hive weight gain (p < 0.05). Totally, the results of the present experiments revealed that diets supplied with organic Zn compared to inorganic Zn play significant roles in the improvement of Zn bioavailability, biological characteristics, and performance in honey bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Versieck J, Cornelis R (1989) Trace elements in human plasma or serum. CRC Press

    Google Scholar 

  2. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA, p 441

    Google Scholar 

  3. Mayasula VK, Arunachalam A, Babatunde SA, Naidu SJ, Sellappana S, Krishnan BB, Rajendran US, Janardhan RI, Bhatta R (2021) Trace minerals for improved performance: a review of Zn and Cu supplementation effects on male reproduction in goats. Trop Anim Health Prod 53(5):1–8. https://doi.org/10.1007/s11250-021-02943-5

    Article  Google Scholar 

  4. Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review (No. 26). US Department of the Interior, Fish and Wildlife Service, p 126

    Google Scholar 

  5. Falchuk KH (1998) The molecular basis for the role of zinc in developmental biology. Molecular and cellular effects of nutrition on disease processes. Springer, Boston, MA, pp 41–48. https://doi.org/10.1007/978-1-4615-5763-0_5

    Book  Google Scholar 

  6. Barbehenn RV, Martin MM (1992) The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera). J Insect Physiol 38(12):973–980. https://doi.org/10.1016/0022-1910(92)90006-Y

    Article  CAS  Google Scholar 

  7. Shaheen AA, Abd El-Fattah AA (1995) Effect of dietary zinc on lipid peroxidation, glutathione, protein thiols levels and superoxide dismutase activity in rat tissues. Int J Biochem Cell Biol 27(1):89–95. https://doi.org/10.1016/1357-2725(94)00053-0

    Article  CAS  PubMed  Google Scholar 

  8. Sun JY, Jing MY, Weng XY, Fu LJ, Xu ZR, Zi NT, Wang JF (2005) Effects of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats. Biol Trace Elem Res 107(2):153–165. https://doi.org/10.1385/BTER:107:2:153

    Article  CAS  PubMed  Google Scholar 

  9. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63. https://doi.org/10.1126/science.273.5271.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohtsu H, Itoh S, Nagatomo S, Kitagawa T, Ogo S, Watanabe Y, Fukuzumi S (2000) Characterization of imidazolate-bridged Cu (II)–Zn (II) heterodinuclear and Cu (II)–Cu (II) homodinuclear hydroperoxo complexes as reaction intermediate models of Cu, Zn–SOD. Chem Comm 12:1051–1052

    Article  Google Scholar 

  11. Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 15(5):687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Sathrasala K (2000) Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol 35(2):167–185. https://doi.org/10.1016/S0531-5565(99)00094-7

    Article  CAS  PubMed  Google Scholar 

  13. Orr WC, Sohal RS (2003) Does overexpression of Cu, Zn-SOD extend life span in Drosophila melanogaster? Exp Gerontol 38(3):227–230. https://doi.org/10.1016/S0531-5565(02)00263-2

    Article  CAS  PubMed  Google Scholar 

  14. Zhang G, Zhang W, Cui X, Xu B (2015) Zinc nutrition increases the antioxidant defenses of honey bees. Entomol Exp Appl 156(3):201–210. https://doi.org/10.1111/eea.12342

    Article  CAS  Google Scholar 

  15. Brown KH, Wuehler SE (2000) Zinc and human health results of recent trials and implications for program interventions and research. Micronutrient Initiative, Canada, pp 68

  16. Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25(1):94–203

    Google Scholar 

  17. Gill C (1997) Organic trace metal assays. Feed international 18(10):18–22

    Google Scholar 

  18. AOAC (1995) Official methods of analysis, 15th edn. Association of Analytical Chemists, Arlington, VA

    Google Scholar 

  19. Behjatian-Esfahani M, Moravej H, Ghaffarzadeh M, Nehzati-Paghaleh GA (2021) Comparison the Zn-threonine, Zn-methionine, and Zn oxide on performance, egg quality, Zn bioavailability, and Zn content in egg and excreta of laying hens. Biol Trace Elem Res 199(1):292–304

    Article  CAS  PubMed  Google Scholar 

  20. Weirich GF, Collins AM, Williams VP (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33(1):3–14. https://doi.org/10.1051/apido:2001001

    Article  CAS  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  22. Farhadi-Javid S, Moravej H, Ghaffarzadeh M, Behjatian-Esfahani M (2021) Comparison of zinc sulfate and zinc threonine based on Zn bioavailability and performance of broiler chicks. Biol Trace Elem Res 199(6):2303–2311

    Article  CAS  PubMed  Google Scholar 

  23. Minitab LLC (2017) Getting started with Minitab 18. Minitab Inc, State College, PA, USA, p 73

    Google Scholar 

  24. Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw Hill Inc Book Co, New York

    Google Scholar 

  25. Ammerman CB, Baker DP, Lewis AJ (eds) (1995) Bioavailability of nutrients for animals: amino acids, minerals, vitamins. Elsevier, p 441

    Google Scholar 

  26. Ashmead D (1974) The need for chelated trace minerals. Vet Med Small Anim Clin 69(4):467–468

    CAS  PubMed  Google Scholar 

  27. Reinstein NH, Lönnerdal B, Keen CL, Hurley LS (1984) Zinc-copper interactions in the pregnant rat: fetal outcome and maternal and fetal zinc, copper and iron. J Nutr 114(7):1266–1279

    Article  CAS  PubMed  Google Scholar 

  28. Brewer GJ, Hill GM, Dick RD, Prasad AS, Cossack ZT (1985) Interaction of trace elements: clinical significance. J Am Coll Nutr 4(1):33–38

    Article  CAS  PubMed  Google Scholar 

  29. Bremner I, Beattie JH (1995) Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 54(2):489–499. https://doi.org/10.1079/PNS19950017

    Article  CAS  PubMed  Google Scholar 

  30. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089. https://doi.org/10.1074/jbc.R600011200

    Article  CAS  PubMed  Google Scholar 

  31. Chan S, Gerson B, Subramaniam S (1998) The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med 18(4):673–685. https://doi.org/10.1016/S0272-2712(18)30143-4

    Article  CAS  PubMed  Google Scholar 

  32. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133(5):1452S–1456S. https://doi.org/10.1093/jn/133.5.1452S

    Article  CAS  PubMed  Google Scholar 

  33. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118. https://doi.org/10.1152/physrev.1993.73.1.79

    Article  CAS  PubMed  Google Scholar 

  34. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  35. Wedekind KJ, Hortin AE, Baker DH (1992) Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J Anim Sci 70(1):178–187. https://doi.org/10.2527/1992.701178x

    Article  CAS  PubMed  Google Scholar 

  36. Herbert EW Jr, Shimanuki H (1978) Mineral requirements for brood-rearing by honeybees fed a synthetic diet. J Apic Res 17(3):118–122. https://doi.org/10.1080/00218839.1978.11099916

    Article  CAS  Google Scholar 

  37. Russell S, Barron AB, Harris D (2013) Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecol Modell 265:158–169. https://doi.org/10.1016/j.ecolmodel.2013.06.005

    Article  Google Scholar 

  38. Williams JB, Roberts SP, Elekonich MM (2008) Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol 43(6):538–549. https://doi.org/10.1016/j.exger.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Huang Z (2012) Pollen nutrition affects honey bee stress resistance. Terr Arthropod Rev 5(2):175–189. https://doi.org/10.1163/187498312X639568

    Article  Google Scholar 

  40. Amdam GV, Simões ZL, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Omholt SW (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39(5):767–773. https://doi.org/10.1016/j.exger.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  41. Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci (PNAS) 103(4):962–967. https://doi.org/10.1073/pnas.0502681103

    Article  CAS  PubMed  Google Scholar 

  42. Engels W, Kaatz H, Zillikens A, Simões ZP, Trube A, Braun R, Dittrich F (1990) Honey bee reproduction: vitellogenin and caste-specific regulation of fertility. Honey bee reproduction: vitellogenin and caste-specific regulation of fertility, pp 495-502

  43. Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41(3):278–294. https://doi.org/10.1051/apido/2010012

    Article  Google Scholar 

  44. Somerville D (2000) Honey bee nutrition and supplementary feeding. Agnote DAI/178, NSW Agriculture 1-8

  45. Nelson CM, Ihle KE, Fondrk MK, Page RE Jr, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meikle WG, Holst N, Colin T, Weiss M, Carroll MJ, McFrederick QS, Barron AB (2018) Using within-day hive weight changes to measure environmental effects on honey bee colonies. PLoS One 13(5):e0197589. https://doi.org/10.1371/journal.pone.0197589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful to the Iranian National Science Foundation (INSF) for the research funding support. This study was funded by grant number (95835756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Moravej.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behjatian-Esfahani, M., Nehzati-Paghleh, G.A., Moravej, H. et al. Effects of Different Levels of Dietary Zinc-Threonine and Zinc Oxide on the Zinc Bioavailability, Biological Characteristics and Performance of Honey Bees (Apis mellifera L.). Biol Trace Elem Res 201, 2555–2562 (2023). https://doi.org/10.1007/s12011-022-03336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03336-x

Keywords

Navigation