Skip to main content
Log in

Spin Lattice Relaxation EPR pO2 Images May Direct the Location of Radiation Tumor Boosts to Enhance Tumor Cure

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Radiation treatment success and high tumor oxygenation and success have been known to be highly correlated. This suggests that radiation therapy guided by images of tumor regions with low oxygenation, oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. Before applying the technique to human subjects, OGRT needs to be tested in animals, most easily in rodents. Electron paramagnetic resonance imaging provides quantitative maps of tissue and tumor oxygen in rodents with 1 mm spatial resolution and 1 torr pO2 resolution at low oxygen levels. The difficulty of using mouse models is their small size and that of their tumors. To overcome this we used XRAD225Cx micro-CT/ therapy system and 3D printed conformal blocks. Radiation is delivered first to a uniform 15% tumor control dose for the whole tumor and then a boost dose to either hypoxic tumor regions or equal volumes of well oxygenated tumor. Delivery of the booster dose used a multiple beam angles to deliver radiation beams whose shape conforms to that of all hypoxic regions or fully avoids those regions. To treat/avoid all hypoxic regions we used individual radiation blocks 3D-printed from acrylonitrile butadiene styrene polymer infused with tungsten particles fabricated immediately after imaging to determine regions with pO2 less than 10 torr. Preliminary results demonstrate the efficacy of the radiation treatment with hypoxic boosts with syngeneic FSa fibrosarcoma tumors in the legs of C3H mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leibel, S. A., Fuks, Z., Zelefsky, M. J., Hunt, M., Burman, C. M., Mageras, G. S., Chui, C. S., Jackson, A., Amols, H. I., & Ling, C. C. (2003). Technological advances in external-beam radiation therapy for the treatment of localized prostate cancer. Seminars in Oncology, 30, 596–615.

    Article  PubMed  Google Scholar 

  2. Mundt, A., & Roeske, J. (2005). Intensity Modulated Radiation Therapy. Hamilton, Ontario: B.C.Decker.

    Google Scholar 

  3. Vaupel, P., & Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast Rev, 26, 225–239. https://doi.org/ 10.1007/s10555-007-9055-1.

    Article  CAS  Google Scholar 

  4. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., & Giaccia, A. J. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88–91.

    Article  CAS  PubMed  Google Scholar 

  5. Elas, M., Bell, R., Hleihel, D., Barth, E. D., Mcfaul, C., Haney, C. R., Bielanska, J., Pustelny, K., Ahn, K. H., Pelizzari, C. A., Kocherginsky, M., & Halpern, H. J. (2008). Electron paramagnetic resonance oxygen image hypoxic fraction plus radiation dose strongly correlates with tumor cure in FSA fibrosarcomas. International Journal of Radiation Oncology, Biology, Physics, 71, 542–549. https://doi.org/ 10.1016/j.ijrobp.2008.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elas, M., Magwood, J. M., Butler, B., Li, C., Wardak, R., Barth, E. D., Epel, B., Rubinstein, S., Pelizzari, C. A., Weichselbaum, R. R., & Halpern, H. J. (2013). EPR oxygen images predict tumor control by a 50% tumor control radiation dose. Cancer Research, 73, 5328–5335. https://doi.org/ 10.1158/0008-5472.Can-13-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Epel, B., Sundramoorthy, S. V., Mailer, C., & Halpern, H. J. (2008). A versatile high speed 250-MHz pulse imager for biomedical applications. Concepts in Magnetic Resonance. Part B, Magnetic Resonance Engineering, 33B, 163–176. https://doi.org/ 10.1002/Cmr.B.20119.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trukhin, D. V., Rogozhnikova, O. Y., Troitskaya, T. I., Vasiliev, V. G., Bowman, M. K., & Tormyshev, V. M. (2016). Facile and high-yielding synthesis of TAM biradicals and monofunctional TAM radicals. Synlett : Accounts and Rapid Communications in Synthetic Organic Chemistry, 27, 893–899. https://doi.org/ 10.1055/s-0035-1561299.

    CAS  PubMed  Google Scholar 

  9. Epel, B., Bowman, M. K., Mailer, C., & Halpern, H. J. (2014). Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magnetic Resonance in Medicine, 72, 362–368. https://doi.org/ 10.1002/mrm.24926.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grant Support: US NIH P41EB002034; R01CA098575; R50 CA211408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Halpern.

Ethics declarations

Conflict of Interest

US patent 8,664,955 was recently awarded to HH and BE. They are members of a start-up company O2M to market the pO2 imaging technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epel, B., Krzykawska-Serda, M., Tormyshev, V. et al. Spin Lattice Relaxation EPR pO2 Images May Direct the Location of Radiation Tumor Boosts to Enhance Tumor Cure. Cell Biochem Biophys 75, 295–298 (2017). https://doi.org/10.1007/s12013-017-0825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0825-2

Keywords

Navigation