Skip to main content

Advertisement

Log in

Transcriptomic profiling of long non-coding RNAs in non-virus associated hepatocellular carcinoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Due to falling prevalence of viral hepatitis (VH), obesity, alcoholism and related liver diseases have become increasingly frequent and important as causes of hepatocellular carcinoma (HCC). However, mechanisms underlying hepatocarcinogenesis and tumor progression in VH-negative HCC remain poorly understood. Long non-coding RNAs (lncRNAs) have been implicated in pathogenesis of human diseases, including HCC. Here, by analyzing 20 clinical samples’ RNA-sequencing data generated from 8 VH-negative and 2 VH-positive HCC patients, we have identified and characterized 1,514 candidate lncRNAs. For differentially expressed genes (DEGs) between tumor tissues and adjacent non-tumor tissues (P < 0.05, |FC| > 2), the upregulated genes were mainly involved in the cell proliferation, and the downregulated genes mediated the metabolic processes and responses to oxidative stress, inflammation and toxic substances. Furthermore, the lncRNA-mRNA co-expression network was constructed, by which two genetic aberrations with high frequency in HCC, SPATA46 and TMEM78, were identified. In addition, we identified 16 DEGs between tumor issues from VH-negative and VH-positive HCC patients with aim to explore gene expression differences that could be involved in the pathogenesis of HCC with varying etiology. In conclusion, we performed the comprehensive analysis of lncRNA and mRNA expression profiles, which could provide valuable insights into the underlying genetic alteration in non-virus associated HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGlynn, K. A., & London, W. T. (2011). The global epidemiology of hepatocellular carcinoma: present and future. Clinics in Liver Disease, 15(2), 223–243.

    Article  Google Scholar 

  2. Wallace, M. C., Preen, D., Jeffrey, G. P., & Adams, L. A. (2015). The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Review of Gastroenterology Hepatology, 9(6), 765–779.

    Article  CAS  Google Scholar 

  3. White, D. L., Thrift, A. P., Kanwal, F., Davila, J., & El-Serag, H. B. (2017). Incidence of Hepatocellular Carcinoma in All 50 United States, From 2000 Through 2012. Gastroenterology, 152(4), 812–820.e5.

    Article  Google Scholar 

  4. Ghouri, Y. A., Mian, I., & Rowe, J. H. (2017). Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. Journal of Carcinogenesis, 16, 1.

    Article  CAS  Google Scholar 

  5. Calle, E. E., Rodriguez, C., Walker-Thurmond, K., & Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. The New England Journal of Medicine, 348(17), 1625–1638.

    Article  Google Scholar 

  6. Dyson, J., Jaques, B., Chattopadyhay, D., Lochan, R., Graham, J., Das, D., Aslam, T., Patanwala, I., Gaggar, S., Cole, M., Sumpter, K., Stewart, S., Rose, J., Hudson, M., Manas, D., & Reeves, H. L. (2014). Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. Journal of Hepatology, 60(1), 110–117.

    Article  Google Scholar 

  7. Ascha, M. S., Hanouneh, I. A., Lopez, R., Tamimi, T. A., Feldstein, A. F., & Zein, N. N. (2010). The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology, 51(6), 1972–1978.

    Article  Google Scholar 

  8. Kanwal, R., & Gupta, S. (2012). Epigenetic modifications in cancer. Clinicals Genetics, 81(4), 303–311.

    Article  CAS  Google Scholar 

  9. Herceg, Z., & Paliwal, A. (2011). Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutation Research, 727(3), 55–61.

    Article  CAS  Google Scholar 

  10. Sceusi, E. L., Loose, D. S., & Wray, C. J. (2011). Clinical implications of DNA methylation in hepatocellular carcinoma. HPB, 13(6), 369–376.

    Article  Google Scholar 

  11. Yuan, J. H., Yang, F., Chen, B. F., Lu, Z., Huo, X. S., Zhou, W. P., Wang, F., & Sun, S. H. (2011). The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 54(6), 2025–2035.

    Article  CAS  Google Scholar 

  12. Yang, Y., Chen, L., Gu, J., Zhang, H., Yuan, J., Lian, Q., Lv, G., Wang, S., Wu, Y., Yang, Y. T., Wang, D., Liu, Y., Tang, J., Luo, G., Li, Y., Hu, L., Sun, X., Wang, D., Guo, M., Xi, Q., Xi, J., Wang, H., Zhang, M. Q., & Lu, Z. J. (2017). Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nature Communication, 8, 14421.

    Article  CAS  Google Scholar 

  13. Merlo, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C., Baylin, S. B., & Sidransky, D. (1995). 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Medicine, 1(7), 686–692.

    Article  CAS  Google Scholar 

  14. Li, X., Hui, A. M., Sun, L., Hasegawa, K., Torzilli, G., Minagawa, M., Takayama, T., & Makuuchi, M. (2004). p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clinical Cancer Research, 10(22), 7484–7489.

    Article  CAS  Google Scholar 

  15. Huang, J. L., Zheng, L., Hu, Y. W., & Wang, Q. (2014). Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis, 35(3), 507–514.

    Article  CAS  Google Scholar 

  16. Peng, L., Yuan, X. Q., Zhang, C. Y., Peng, J. Y., Zhang, Y. Q., Pan, X., & Li, G. C. (2018). The emergence of long non-coding RNAs in hepatocellular carcinoma: an update. Journal of Cancer, 9(14), 2549–2558.

    Article  Google Scholar 

  17. Geng, Y. J., Xie, S. L., Li, Q., Ma, J., & Wang, G. Y. (2011). Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. Journal of International Medical Research, 39(6), 2119–2128.

    Article  CAS  Google Scholar 

  18. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P., Kong, B., Li, R., West, R. B., van de Vijver, M. J., Sukumar, S., & Chang, H. Y. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.

    Article  CAS  Google Scholar 

  19. Heerboth, S., Lapinska, K., Snyder, N., Leary, M., & Rollinson (2014). Use of epigenetic drugs in disease: an overview. Genetics and Epigenetics, 6, 9–19.

    Article  CAS  Google Scholar 

  20. Sarkar, S., Horn, G., Moulton, K., Oza, A., Byler, S., Kokolus, S., & Longacre, M. (2013). Cancer development, progression, and therapy: an epigenetic overview. International Journal of Molecular Sciences, 14(10), 21087–21113.

    Article  Google Scholar 

  21. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650–1667.

    Article  CAS  Google Scholar 

  22. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295.

    Article  CAS  Google Scholar 

  23. Kang, Y. J., Yang, D. C., & Kong, L., et al. (2017). CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45, W12–W16.

    Article  CAS  Google Scholar 

  24. Sun, L., Luo, H., & Bu, D., et al. (2013). Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 41, e166.

    Article  CAS  Google Scholar 

  25. Wang, L., Park, H. J., Dasari, S., Wang, S., Kocher, J. P., & Li, W. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41, e74.

    Article  CAS  Google Scholar 

  26. Li, W., Cowley, A., & Uludag, M., et al. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43, W580–W584.

    Article  CAS  Google Scholar 

  27. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.

    Article  CAS  Google Scholar 

  28. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.

    Article  CAS  Google Scholar 

  29. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

    Article  Google Scholar 

  30. Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498–2504.

    Article  CAS  Google Scholar 

  31. Zhang, Q., Matsuura, K., Kleiner, D. E., Zamboni, F., Alter, H. J., & Farci, P. (2016). Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology. Journal of Translational Medicine, 14(1), 328.

    Article  Google Scholar 

  32. Fan, H., Zhang, Q., Zhao, X., Lv, P., Liu, M., & Tang, H. (2017). Transcriptomic profiling of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma. Oncotarget, 8(39), 65421–65434.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Lijun Wang for PCR analysis. This study was supported by Shenzhen Foundation of Science and Technology (JCYJ20180305123929814, JCYJ20170307094549868 and JCYJ20160425103911638), Science and Technology Bureau of Baoan (2018JD124 and 2019JD031) and Funds for Young Scholar of Shenzhen Baoan People’s Hospital (2018A003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Zhan or Jintao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., He, C., Liu, H. et al. Transcriptomic profiling of long non-coding RNAs in non-virus associated hepatocellular carcinoma. Cell Biochem Biophys 78, 465–474 (2020). https://doi.org/10.1007/s12013-020-00915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00915-4

Keywords

Navigation