Skip to main content

Advertisement

Log in

Mechanistic Basis of ex Vivo Umbilical Cord Blood Stem Progenitor Cell Expansion

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Umbilical cord blood (CB) transplantation has been used successfully in humans for three decades due to its rapid availability for patients lacking a suitable allogeneic donor, less stringent HLA matching requirements, and low rates of relapse and chronic graft-versus-host disease (GVHD). However, CB transplantation is associated with complications, such as delayed hematopoietic engraftment, graft failure, which increases infection and bleeding and causes longer hospital stays, and transplant-related mortality. The majority of these biological limitations are due to the unforeseeable functional potency of multipotent hematopoietic stem cells (HSCs), which reduce the predictability of successful transplantation; however, several strategies have been developed to increase the number of hematopoietic stem progenitor cells (HSPCs) infused during CB transplantation. This review primarily addresses the methods that promote ex vivo CB expansion within the context of symmetrical and asymmetrical HSC division and those that rely on epigenetic mechanisms, along with the reportedly most successful cytokine combinations. We also review recent clinical research on small molecules (StemRegenin-1, UM171, and nicotinamide) in ex vivo expanded CB and discuss yet unvalidated preclinical strategies. Expanding and transplanting CB graft enriched in HSPCs in a single CB unit is a particularly exciting prospect with the potential to improve the use and availability of CB grafts. Greater knowledge of optimal ex vivo expansion strategies, cell longevity, and graft potency will expand the scope of cellular therapies. Also the development of adequate ex vivo HSPC expansion strategies could bring expanded cord blood grafts to the forefront of transplant therapy and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gluckman, E., Devergié, A., Bourdeau-Esperou, H., Thierry, D., Traineau, R., Auerbach, A., & Broxmeyer, H. E. (1990). Transplantation of umbilical cord blood in Fanconi’s anemia. Nouvelle Revue Francaise d’Hematologie, 32(6), 423–425.

    CAS  PubMed  Google Scholar 

  2. Voelker, R. (2011). FDA grants approval for first cord blood product. JAMA, 306(22), 2442. https://doi.org/10.1001/jama.2011.1759

    Article  CAS  PubMed  Google Scholar 

  3. Sauter, C., & Barker, J. N. (2008). Unrelated donor umbilical cord blood transplantation for the treatment of hematologic malignancies. Current Opinion in Hematology, 15(6), 568–575.

    PubMed  PubMed Central  Google Scholar 

  4. Majhail, N. S., Brunstein, C. G., & Wagner, J. E. (2006). Double umbilical cord blood transplantation. Current Opinion in Immunology, 18(5), 571–575.

    CAS  PubMed  Google Scholar 

  5. Aljitawi, O. S. (2012). Ex vivo expansion of umbilical cord blood: where are we? International Journal of Hematology, 95(4), 371–379.

    PubMed  Google Scholar 

  6. Maung, K. K., & Horwitz, M. E. (2019). Current and future perspectives on allogeneic transplantation using ex vivo expansion or manipulation of umbilical cord blood cells. International Journal of Hematology, 110, 50–58.

    PubMed  Google Scholar 

  7. Wagner, J. E. Jr., Eapen, M., Carter, S., Wang, Y., Schultz, K. R., Wall, D. A., Bunin, N., Delaney, C., Haut, P., Margolis, D., Peres, E., Verneris, M. R., Walters, M., Horowitz, M. M., & Kurtzberg, J. (2014). One-unit versus two-unit cord-blood transplantation for hematologic cancers. New England Journal of Medicine, 371(18), 1685–1694.

    CAS  PubMed  Google Scholar 

  8. Levac, K., Karanu, F., & Bhatia, M. (2005). Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo. Haematologica, 90(2), 166–172.

    CAS  PubMed  Google Scholar 

  9. Bari, S., Seah, K. K., Poon, Z., Cheung, A. M., Fan, X., Ong, S. Y., Li, S., Koh, L. P., & Hwang, W. Y. K. (2015). Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biology of Blood and Marrow Transplantation, 21(6), 1008–1019.

    PubMed  Google Scholar 

  10. de Lima, M., McMannis, J., Gee, A., Komanduri, K., Couriel, D., Andersson, B. S., Hosing, C., Khouri, I., Jones, R., Champlin, R., Karandish, S., Sadeghi, T., Peled, T., Grynspan, F., Daniely, Y., Nagler, A., & Shpall, E. J. (2008). Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplantation, 41(9), 771–778.

    PubMed  PubMed Central  Google Scholar 

  11. Delaney, C., Heimfeld, S., Brashem-Stein, C., Voorhies, H., Manger, R. L., & Bernstein, I. D. (2010). Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Medicine, 16(2), 232–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagner, J. E. Jr., Brunstein, C. G., Boitano, A. E., DeFor, T. E., McKenna, D., Sumstad, D., Blazar, B. R., Tolar, J., Le, C., Jones, J., Cooke, M. P., & Bleul, C. C. (2016). Phase I/II Trial of StemRegenin-1 Umbilical Cord Blood Hematopoietic Stem Cells Supports Testing as a Stand-Alone Graft. Cell Stem Cell, 18(1), 144–155.

    CAS  PubMed  Google Scholar 

  13. Fares, I., Chagraoui, J., Gareau, Y., Gingras, S., Ruel, R., Mayotte, N., Csaszar, E., Knapp, D. J., Miller, P., Ngom, M., Imren, S., Roy, D. C., Watts, K. L., Kiem, H. P., Herrington, R., Iscove, N. N., Humphries, R. K., Eaves, C. J., Cohen, S., Marinier, A., et al. (2014). Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 345(6203), 1509–1512.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Horwitz, M. E., Chao, N. J., Rizzieri, D. A., Long, G. D., Sullivan, K. M., Gasparetto, C., Chute, J. P., Morris, A., McDonald, C., Waters-Pick, B., Stiff, P., Wease, S., Peled, A., Snyder, D., Cohen, E. G., Shoham, H., Landau, E., Friend, E., Peleg, I., Aschengrau, D., et al. (2014). Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. The Journal of Clinical Investigation, 124(7), 3121–3128.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dahlberg, A., Delaney, C., & Bernstein, I. D. (2011). Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 117(23), 6083–6090.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hagedorn, E. J., Durand, E. M., Fast, E. M., & Zon, L. I. (2014). Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Experimental Cell Research, 329(2), 220–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson, S. N., Ng, J., Niu, T., Yang, H., McMannis, J. D., Karandish, S., Kaur, I., Fu, P., Del Angel, M., Messinger, R., Flagge, F., de Lima, M., Decker, W., Xing, D., Champlin, R., & Shpall, E. J. (2006). Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplantation, 37, 359–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmud, N., Petro, B., Baluchamy, S., Li, X., Taioli, S., Lavelle, D., Quigley, J. G., Suphangul, M., & Araki, H. (2014). Differential Effects of Epigenetic Modifiers on the Expansion and Maintenance of Human Cord Blood Stem/Progenitor Cells. Biology of Blood and Marrow Transplantation, 20(4), 480–489.

    CAS  PubMed  Google Scholar 

  19. Papa, L., Zimran, E., Djedaini, M., Ge, Y., Ozbek, U., Sebra, R., Sealfon, S. C., & Hoffman, R. (2018). Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Advances, 2(20), 2766–2779.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalo-Daganzo, R., Regidor, C., Martín-Donaire, T., Rico, M. A., Bautista, G., Krsnik, I., Forés, R., Ojeda, E., Sanjuán, I., García-Marco, J. A., Navarro, B., Gil, S., Sánchez, R., Panadero, N., Gutiérrez, Y., García-Berciano, M., Pérez, N., Millán, I., Cabrera, R., & Fernández, M. N. (2009). Results of a pilot study on the use of third-party donor mesenchymal stromal cells in cord blood transplantation in adults. Cytotherapy, 11(3), 278–288.

    CAS  PubMed  Google Scholar 

  21. Farag, S. S., Nelson, R., Cairo, M. S., O’Leary, H. A., Zhang, S., Huntley, C., Delgado, D., Schwartz, J., Zaid, M. A., Abonour, R., Robertson, M., & Broxmeyer, H. (2017). High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget, 8(66), 110350–110357.

    PubMed  PubMed Central  Google Scholar 

  22. Ratajczak, M. Z., Reca, R., Wysoczynski, M., Kucia, M., Baran, J. T., Allendorf, D. J., Ratajczak, J., & Ross, G. D. (2004). Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia, 18, 1482–1490.

    CAS  PubMed  Google Scholar 

  23. Brunstein, C. G., McKenna, D. H., DeFor, T. E., Sumstad, D., Paul, P., Weisdorf, D. J., Ratajczak, M., Laughlin, M. J., & Wagner, J. E. (2013). Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biology of Blood and Marrow Transplantation, 19(10), 1474–1479.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Porter, R. L., Georger, M. A., Bromberg, O., McGrath, K. E., Frisch, B. J., Becker, M. W., & Calvi, L. M. (2013). Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury. Stem Cells, 31(2), 372–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cutler, C., Multani, P., Robbins, D., Kim, H. T., Le, T., Hoggatt, J., Pelus, L. M., Desponts, C., Chen, Y., Rezner, B., Armand, P., Koreth, J., Glotzbecker, B., Ho, V. T., Alyea, E., Isom, M., Kao, G., Armant, M., Silberstein, L., Hu, P., et al. (2013). Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 122(17), 3074–3081.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Popat, U., Mehta, R. S., Rezvani, K., Fox, P., Kondo, K., Marin, D., McNiece, I., Oran, B., Hosing, C., Olson, A., Parmar, S., Shah, N., Andreeff, M., Kebriaei, P., Kaur, I., Yvon, E., de Lima, M., Cooper, L. J. N., Tewari, P., Champlin, R. E., et al. (2015). Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood, 125(19), 2885–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia, L., McDaniel, J. M., Yago, T., Doeden, A., & McEver, R. P. (2004). Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood, 104(10), 3091–3096.

    CAS  PubMed  Google Scholar 

  28. Robinson, S. N., Simmons, P. J., Thomas, M. W., Brouard, N., Javni, J. A., Trilok, S., Shim, J. S., Yang, H., Steiner, D., Decker, W. K., Xing, D., Shultz, L. D., Savoldo, B., Dotti, G., Bollard, C. M., Miller, L., Champlin, R. E., Shpall, E. J., & Zweidler-McKay, P. A. (2012). Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγ(null) mice. Experimental Hematology, 40(6), 445–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pineault, N., & Abu-Khader, A. (2015). Advances in umbilical cord blood stem cell expansion and clinical translation. Experimental Hematology, 43(7), 498–513.

    PubMed  Google Scholar 

  30. Araki, H., Mahmud, N., Milhem, M., Nunez, R., Xu, M., Beam, C. A., & Hoffman, R. (2006). Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Experimental Hematology, 34(2), 140–149.

    CAS  PubMed  Google Scholar 

  31. Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., Walker, J. R., Flaveny, C. A., Perdew, G. H., Denison, M. S., Schultz, P. G., & Cooke, M. P. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 329(5997), 1345–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, X., Skutt-Kakaria, K., Davison, J., Ou, Y. L., Choi, E., Malik, P., Loeb, K., Wood, B., Georges, G., Torok-Storb, B., & Paddison, P. J. (2012). G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes and Development, 26(22), 2499–2511.

    CAS  PubMed  Google Scholar 

  33. Peled, T., Shoham, H., Aschengrau, D., Yackoubov, D., Frei, G., Rosenheimer, G. N., Lerrer, B., Cohen, H. Y., Nagler, A., Fibach, E., & Peled, A. (2012). Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Experimental Hematology, 40(4), 342–355.e1.

    CAS  PubMed  Google Scholar 

  34. Saraf, S., Araki, H., Petro, B., Park, Y., Taioli, S., Yoshinaga, K. G., Koca, E., Rondelli, D., & Mahmud, N. (2015). Ex vivo expansion of human mobilized peripheral blood stem cells using epigenetic modifiers. Transfusion, 55(4), 864–874.

    CAS  PubMed  Google Scholar 

  35. Milhem, M., Mahmud, N., Lavelle, D., Araki, H., DeSimone, J., Saunthararajah, Y., & Hoffman, R. (2004). Modification of hematopoietic stem cell fate by 5aza 2’deoxycytidine and trichostatin A. Blood, 103(11), 4102–4110.

    CAS  PubMed  Google Scholar 

  36. Chaurasia, P., Gajzer, D. C., Schaniel, C., D’Souza, S., & Hoffman, R. (2014). Epigenetic reprogramming induces the expansion of cord blood stem cells. Journal of Clinical Investigation, 124(6), 2378–2395.

    CAS  PubMed  Google Scholar 

  37. Araki, H., Baluchamy, S., Yoshinaga, K., Petro, B., Petiwala, S., Parajuli, R., Milhema, M., Lavellea, D., DeSimonea, J., & Mahmudab, N. (2009). Cord blood stem cell expansion is permissive to epigenetic regulation and environmental cues. Experimental Hematology, 37(9), 1084–1095.

    CAS  PubMed  Google Scholar 

  38. Araki, H., Yoshinaga, K., Boccuni, P., Zhao, Y., Hoffman, R., & Mahmud, N. (2007). Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood, 109(8), 3570–3578.

    CAS  PubMed  Google Scholar 

  39. Cohen, S., Roy, J., Lachance, S., Delisle, J. S., Marinier, A., Busque, L., Roy, D. C., Barabé, F., Ahmad, I., Bambace, N., Bernard, L., Kiss, T., Bouchard, P., Caudrelier, P., Landais, S., Larochelle, F., Chagraoui, J., Lehnertz, B., Corneau, S., Tomellini, E., et al. (2020). Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. The Lancet Haematology, 7(2), e134–e145.

    PubMed  Google Scholar 

  40. Mahmud, N., Sidani, A., Koca, E., Kim, A., & Petro, B. (2014). Epigenetic Modifiers Promote Expansion of Transplantable Human Cord Blood Stem/Progenitor Cells Likely Through Activation of Inflammatory/Stress Response Signaling Pathways. Vancouver: ISSCR. (Abstract).

    Google Scholar 

  41. Papa, L., Djedaini, M., & Hoffman, R. (2019). Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Annals of the New York Academy of Sciences. https://doi.org/10.1111/nyas.14133

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vannini, N., Girotra, M., Naveiras, O., Nikitin, G., Campos, V., Giger, S., Roch, A., Auwerx, J., & Lutolf, M. P. (2016). Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nature Communications, 7, 13125.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. He, J., Xiao, Z., Chen, X., Chen, M., Fang, L., Yang, M., Lv, Q., Li, Y., Li, G., Hu, J., & Xie, X. (2010). The expression of functional Toll-like receptor 4 is associated with proliferation and maintenance of stem cell phenotype in endothelial progenitor cells (EPCs). Journal of Cellular Biochemistry, 111(1), 179–186.

    CAS  PubMed  Google Scholar 

  44. Petro, B., Mahmud, D., Taioli, S., Ganapathy, A., Senyuk, V., Yoshinaga, K. G., Suphangul, M., Rondelli, D., & Mahmud, N. (2019). Chromatin-Modifying Agent-Expanded Human Cord Blood Cells Display Reduced Allostimulatory Capacity. Journal of Immunology, 202(8), 2493–2501.

    CAS  Google Scholar 

  45. Saucourt, C., Vogt, S., Merlin, A., Valat, C., Criquet, A., Harmand, L., Birebent, B., Rouard, H., Himmelspach, C., Jeandidier, É, Chartois-Leauté, A. G., Derenne, S., Koehl, L., Salem, J. E., Hulot, J. S., Tancredi, C., Aries, A., Judé, S., Martel, E., Richard, S., Douay, L., & Hénon, P. (2019). Design and Validation of an Automated Process for the Expansion of Peripheral Blood-Derived CD34(+) Cells for Clinical Use After Myocardial Infarction. Stem Cells Translational Medicine, 8(8), 822–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Esser, C., & Rannug, A. (2015). The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacological Reviews, 67(2), 259–279.

    CAS  PubMed  Google Scholar 

  47. Boitano, A. E., Goncalves, K. A., Sumstad, D., Wagner, J. E., & Cooke, M. P. (2019). Mgta-456 contains large numbers of CD34 + CD90 + hematopoietic stem cells (HSC) which contain the NSG engraftment activity and correlate with time to neutrophil recovery following transplant into patients with hematologic malignancy. Biology of Blood and Marrow Transplantation, 25(3), S2–S3.

    Google Scholar 

  48. Anand, S., Thomas, S., Hyslop, T., Adcock, J., Corbet, K., Gasparetto, C., Lopez, R., Long, G. D., Morris, A. K., Rizzieri, D. A., Sullivan, K. M., Sung, A. D., Sarantopoulos, S., Chao, N. J., & Horwitz, M. E. (2017). Transplantation of Ex Vivo Expanded Umbilical Cord Blood (NiCord) Decreases Early Infection and Hospitalization. Biology of Blood and Marrow Transplantation, 23(7), 1151–1157.

    PubMed  PubMed Central  Google Scholar 

  49. Lahlil, R., Scrofani, M., Barbet, R., Tancredi, C., Aries, A., & Hénon, P. (2018). VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion. Stem Cell Reviews and Reports, 14(4), 510–524.

    CAS  Google Scholar 

  50. Stanevsky, A., Shimoni, A., Yerushalmi, R., & Nagler, A. (2011). Cord blood stem cells for hematopoietic transplantation. Stem Cell Reviews and Reports, 7(2), 425–433.

    Google Scholar 

  51. Bueno, C., Montes, R., & Menendez, P. (2010). The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34 + hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34 + HSPCs. Stem Cell Reviews and Reports, 6(2), 215–223.

    CAS  Google Scholar 

  52. Lee, B., & Davidson, B. L. (2011). Gene therapy grows into young adulthood: special review issue. Human Molecular Genetics, 20(R1), R1. https://doi.org/10.1093/hmg/ddr188.

    Article  CAS  PubMed  Google Scholar 

  53. Horn, P. A., Morris, J. C., Bukovsky, A. A., Andrews, R. G., Naldini, L., Kurre, P., & Kiem, H.-P. (2002). Lentivirus-mediated gene transfers into hematopoietic repopulating cells in baboons. Gene Therapy, 9, 1464–1471.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing. We would also like to thank James Zacny, PhD, for his critical review of the manuscript and his helpful suggestions. We also acknowledge contributions of Amudha Ganapathy, PhD and Benjamin Petro for their asistance with literature search and technical review of the draft manuscript.

Funding

The studies reported in this review from the Mahmud laboratory were supported in part by the Leukemia Lymphoma Society Translational Research Program, the University of Illinois at Chicago Chancellor’s Innovation Award, and Office of Vice Chancellor for Research Areas of Excellence Award to Dr. Nadim Mahmud. The funders had no role in study design, data collection and analysis, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadim Mahmud.

Ethics declarations

Ethical Statement

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. The authors of this manuscript have read and understood this journal’s policies, and believe that neither the manuscript nor the unpublished studies from the authors laboratory discussed here violates any of these.

Conflicts of Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sica, R.A., Terzioglu, M.K., Mahmud, D. et al. Mechanistic Basis of ex Vivo Umbilical Cord Blood Stem Progenitor Cell Expansion. Stem Cell Rev and Rep 16, 628–638 (2020). https://doi.org/10.1007/s12015-020-09981-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09981-w

Keywords

Navigation