Skip to main content

Advertisement

Log in

Advances in Liver Cancer Stem Cell Isolation and their Characterization

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All information is given in the manuscript.

Abbreviations

LCSC:

liver cancer stem cells

IARC:

International Agency for Research on Cancer

CSCs:

cancer stem cells

HCC:

hepatocellular carcinoma

AML:

acute myelocytic leukemia

HPCs:

hepatic progenitor cells

ALDH1:

aldehyde Dehydrogenase 1

OCT-4:

octamer-binding transcription factor 4

PLB:

plumbagin

FGF2:

fibroblast growth factor 2

GEM:

gemcitabine

EGFR:

epidermal growth factor receptor

AFP:

alpha-fetoprotein

SCID:

severe combined immunodeficient

CK19:

cytokeratin19

EpCAM:

epithelial cell adhesion molecule

FACS:

fluorescence-activated cell sorting

MACS:

magnetic activated cell sorting

IMS:

immunomagnetic bead sorting

TMs:

thermosensitive magneto liposomes

17-AAG:

17-allylamino-17-demethoxgeldanamycin

SFCs:

sphere forming cells

SP:

side population

Rho123:

Rhodamine 123

ABCG2:

ATP Binding Cassette Subfamily G Member 2

UV:

ultraviolet

DCV:

Dye Cycle Violet

LDA:

limited dilution method

HGF:

hepatocyte growth factor

BAAA:

BODIPY®-amino acetaldehyde

PDGC:

percoll discontinuous gradient centrifugation method

MMAF:

monomethyl auristatin F

5-FU:

fluorouracil

CDDP:

cisplatin

DXR:

doxorubicin

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

CAR-T:

T cell chimeric antigen receptor

HBV:

hepatitis B virus

HCV:

hepatitis C virus

RPMI-1640:

Gibco Roswell Park Memorial Institute (RPMI) 1640 Medium

DMEM:

Dulbecco’s Modified Eagle’s Medium

PDX:

patient derived xenograft

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  2. Covey, A. M. (2018). Hepatocellular carcinoma: updates to screening and diagnosis. Journal of the National Comprehensive Cancer Network, 16(5S), 663–665. https://doi.org/10.6004/jnccn.2018.0052.

    Article  PubMed  Google Scholar 

  3. Chen, J., Jin, R., Zhao, J., Liu, J., Ying, H., Yan, H., Zhou, S., Liang, Y., Huang, D., Liang, X., Yu, H., Lin, H., & Cai, X. (2015). Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Letters, 367(1), 1–11. https://doi.org/10.1016/j.canlet.2015.06.019.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen, L., Chapel, S., Tran, B. D., & Lacy, S. (2019). Cabozantinib exposure-response analyses of efficacy and safety in patients with advanced hepatocellular carcinoma. Journal of Pharmacokinetics and Pharmacodynamics, 46(6), 577–589. https://doi.org/10.1007/s10928-019-09659-y.

    Article  CAS  PubMed  Google Scholar 

  5. Yu, C. C., Huang, S. Y., Chang, S. F., Liao, K. F., & Chiu, S. C. (2020). The synergistic anti-cancer effects of NVP-BEZ235 and regorafenib in hepatocellular carcinoma. Molecules, 25(10). https://doi.org/10.3390/molecules25102454.

  6. Nassar, D., & Blanpain, C. (2016). Cancer stem cells: basic concepts and therapeutic implications. Annual Review of Pathology, 11, 47–76. https://doi.org/10.1146/annurev-pathol-012615-044438.

    Article  CAS  PubMed  Google Scholar 

  7. Efremov, Y. R., Proskurina, A. S., Potter, E. A., Dolgova, E. V., Efremova, O. V., Taranov, O. S., Ostanin, A. A., Chernykh, E. R., Kolchanov, N. A., & Bogachev, S. S. (2018). Cancer stem cells: emergent nature of tumor emergency. Frontiers in Genetics, 9, 544. https://doi.org/10.3389/fgene.2018.00544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, X., Wang, R., Bai, S., Xiong, S., Li, Y., Liu, M., Zhao, Z., Wang, Y., Zhao, Y., Chen, W., Billiar, T. R., & Cheng, B. (2019). Musashi2 contributes to the maintenance of CD44v6+ liver cancer stem cells via notch1 signaling pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 505. https://doi.org/10.1186/s13046-019-1508-1.

    Article  CAS  Google Scholar 

  9. Chen, L., Wu, M., Ji, C., Yuan, M., Liu, C., & Yin, Q. (2020). Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2. IUBMB Life, 72(2), 285–295. https://doi.org/10.1002/iub.2166.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Q., Zhang, Z., Lu, Y., Liu, Q., Xu, X., Xu, J., Liu, Y., Yu, H., Yu, D., & Sun, B. (2019). Loss of xanthine oxidoreductase potentiates propagation of hepatocellular carcinoma stem cells. Hepatology. https://doi.org/10.1002/hep.30978.

  11. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., & Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648. https://doi.org/10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  12. Xia, Q., Han, T., Yang, P., Wang, R., Li, H., Zhang, J., & Zhou, X. (2019). MicroRNA-28-5p regulates liver cancer stem cell expansion via IGF-1 pathway. Stem Cells International, 2019, 8734362. https://doi.org/10.1155/2019/8734362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Si, A., Wang, L., Miao, K., Zhang, R., Ji, H., Lei, Z., Cheng, Z., Fang, X., & Hao, B. (2019). miR-219 regulates liver cancer stem cell expansion via E-cadherin pathway. Cell Cycle, 18(24), 3550–3561. https://doi.org/10.1080/15384101.2019.1691762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kahraman, D. C., Kahraman, T., & Cetin-Atalay, R. (2019). Targeting PI3K/Akt/mTOR pathway identifies differential expression and functional role of il8 in liver cancer stem cell enrichment. Molecular Cancer Therapeutics, 18(11), 2146–2157. https://doi.org/10.1158/1535-7163.MCT-19-0004.

    Article  CAS  PubMed  Google Scholar 

  15. Li, X., Strietz, J., Bleilevens, A., Stickeler, E., & Maurer, J. (2020). Chemotherapeutic stress influences epithelial-mesenchymal transition and stemness in cancer stem cells of triple-negative breast cancer. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/ijms21020404.

  16. Quaglino, E., Conti, L., & Cavallo, F. (2020). Breast cancer stem cell antigens as targets for immunotherapy. Seminars in Immunology, 101386. https://doi.org/10.1016/j.smim.2020.101386.

  17. Hershey, B. J., Vazzana, R., Joppi, D. L., & Havas, K. M. (2019). Lipid droplets define a sub-population of breast cancer stem cells. Journal of Clinical Medicine, 9(1). https://doi.org/10.3390/jcm9010087.

  18. Acikgoz, E., Tatar, C., & Oktem, G. (2020). Triptolide inhibits CD133(+) /CD44(+) colon cancer stem cell growth and migration through triggering apoptosis and represses epithelial-mesenchymal transition via downregulating expressions of snail, slug, and twist. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.29602.

  19. Zhang, L., Niu, H., Ma, J., Yuan, B. Y., Chen, Y. H., Zhuang, Y., Chen, G. W., Zeng, Z. C., & Xiang, Z. L. (2019). The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Molecular Cancer, 18(1), 120. https://doi.org/10.1186/s12943-019-1044-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ullmann, P., Nurmik, M., Schmitz, M., Rodriguez, F., Weiler, J., Qureshi-Baig, K., Felten, P., Nazarov, P. V., Nicot, N., Zuegel, N., Haan, S., & Letellier, E. (2019). Tumor suppressor miR-215 counteracts hypoxia-induced colon cancer stem cell activity. Cancer Letters, 450, 32–41. https://doi.org/10.1016/j.canlet.2019.02.030.

    Article  CAS  PubMed  Google Scholar 

  21. Li, X., Ding, J., Li, N., Liu, W., Ding, F., Zheng, H., Ning, Y., Wang, H., Liu, R., & Ren, S. (2019). Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents. European Journal of Medicinal Chemistry, 179, 667–679. https://doi.org/10.1016/j.ejmech.2019.06.086.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, Z., Li, T., Chen, W., Wu, D., Qin, Y., Liu, M., Wu, G., He, L., Li, H., & Gu, H. (2019). Gab2 promotes cancer stem cell like properties and metastatic growth of ovarian cancer via downregulation of miR-200c. Experimental Cell Research, 382(1), 111462. https://doi.org/10.1016/j.yexcr.2019.06.007.

    Article  CAS  PubMed  Google Scholar 

  23. Mihanfar, A., Aghazadeh Attari, J., Mohebbi, I., Majidinia, M., Kaviani, M., Yousefi, M., & Yousefi, B. (2019). Ovarian cancer stem cell: a potential therapeutic target for overcoming multidrug resistance. Journal of Cellular Physiology, 234(4), 3238–3253. https://doi.org/10.1002/jcp.26768.

    Article  CAS  PubMed  Google Scholar 

  24. Oishi, N., Yamashita, T., & Kaneko, S. (2014). Molecular biology of liver cancer stem cells. Liver Cancer, 3(2), 71–84. https://doi.org/10.1159/000343863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oishi, N., & Wang, X. W. (2011). Novel therapeutic strategies for targeting liver cancer stem cells. International Journal of Biological Sciences, 7(5), 517–535. https://doi.org/10.7150/ijbs.7.517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P., & Lee, O. K. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275–1284. https://doi.org/10.1002/hep.20469.

    Article  CAS  PubMed  Google Scholar 

  27. Yin, Z., Jiang, K., Li, R., Dong, C., & Wang, L. (2018). Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Molecular Cancer, 17(1), 178. https://doi.org/10.1186/s12943-018-0926-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karakasiliotis, I., & Mavromara, P. (2015). Hepatocellular carcinoma: from hepatocyte to liver cancer stem cell. Frontiers in Physiology, 6, 154. https://doi.org/10.3389/fphys.2015.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hsiao, P. J., Jao, J. C., Tsai, J. L., Chang, W. T., Jeng, K. S., & Kuo, K. K. (2014). Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic “stem-like” cells. The Kaohsiung Journal of Medical Sciences, 30(2), 57–67. https://doi.org/10.1016/j.kjms.2013.10.002.

    Article  PubMed  Google Scholar 

  30. Wang, B., & Jacob, S. T. (2011). Role of cancer stem cells in hepatocarcinogenesis. Genome Medicine, 3(2), 11. https://doi.org/10.1186/gm225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabian, A., Stegner, S., Miarka, L., Zimmermann, J., Lenk, L., Rahn, S., Buttlar, J., Viol, F., Knaack, H., Esser, D., Schauble, S., Grossmann, P., Marinos, G., Hasler, R., Mikulits, W., Saur, D., Kaleta, C., Schafer, H., & Sebens, S. (2019). Metastasis of pancreatic cancer: an uninflamed liver micromilieu controls cell growth and cancer stem cell properties by oxidative phosphorylation in pancreatic ductal epithelial cells. Cancer Letters, 453, 95–106. https://doi.org/10.1016/j.canlet.2019.03.039.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., Park, H. G., Han, S. I., & Kang, H. S. (2017). Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 16(1), 10. https://doi.org/10.1186/s12943-016-0577-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin, S. H., Liu, T., Ming, X., Tang, Z., Fu, L., Schmitt-Kopplin, P., Kanawati, B., Guan, X. Y., & Cai, Z. (2016). Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions. Scientific Reports, 6, 21184. https://doi.org/10.1038/srep21184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, X., Qu, D., Weygant, N., Peng, J., & Houchen, C. W. (2020). Cancer stem cell marker DCLK1 correlates with tumorigenic immune infiltrates in the colon and gastric adenocarcinoma microenvironments. Cancers (Basel), 12(2). https://doi.org/10.3390/cancers12020274.

  35. Ghanei, Z., Jamshidizad, A., Joupari, M. D., & Shamsara, M. (2020). Isolation and characterization of breast cancer stem cell-like phenotype by Oct4 promoter-mediated activity. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.29437.

  36. Bhaduri, A., Di Lullo, E., Jung, D., Muller, S., Crouch, E. E., Espinosa, C. S., Ozawa, T., Alvarado, B., Spatazza, J., Cadwell, C. R., Wilkins, G., Velmeshev, D., Liu, S. J., Malatesta, M., Andrews, M. G., Mostajo-Radji, M. A., Huang, E. J., Nowakowski, T. J., Lim, D. A., Diaz, A., Raleigh, D. R., & Kriegstein, A. R. (2020). Outer radial glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell, 26(1), 48–63 e46. https://doi.org/10.1016/j.stem.2019.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fathi, F., Rahbarghazi, R., Movassaghpour, A. A., & Rashidi, M. R. (2019). Detection of CD133-marked cancer stem cells by surface plasmon resonance: its application in leukemia patients. Biochimica et Biophysica Acta - General Subjects, 1863(10), 1575–1582. https://doi.org/10.1016/j.bbagen.2019.06.009.

    Article  CAS  PubMed  Google Scholar 

  38. Fu, J. J., Zhou, Y., Shi, X. X., Kang, Y. J., Lu, Z. S., Li, Y., Li, C. M., & Yu, L. (2019). Spontaneous formation of tumor spheroid on a hydrophilic filter paper for cancer stem cell enrichment. Colloids and Surfaces, B: Biointerfaces, 174, 426–434. https://doi.org/10.1016/j.colsurfb.2018.11.038.

    Article  CAS  PubMed  Google Scholar 

  39. Hou, Y. C., Chao, Y. J., Hsieh, M. H., Tung, H. L., Wang, H. C., & Shan, Y. S. (2019). Low CD8(+) T cell infiltration and high PD-L1 expression are associated with level of CD44(+)/CD133(+) cancer stem cells and predict an unfavorable prognosis in pancreatic cancer. Cancers (Basel), 11(4). https://doi.org/10.3390/cancers11040541.

  40. Lin, L., Jou, D., Wang, Y., Ma, H., Liu, T., Fuchs, J., Li, P. K., Lu, J., Li, C., & Lin, J. (2016). STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells. International Journal of Oncology, 49(6), 2265–2274. https://doi.org/10.3892/ijo.2016.3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, J., Li, J., Wu, L., Geng, Y., Yu, J., Chong, C., Wang, M., Gao, Y., Bai, C., Ding, Y., Chen, Y., & Zhang, Q. (2018). Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. European Journal of Medicinal Chemistry, 151, 601–627. https://doi.org/10.1016/j.ejmech.2018.03.078.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, X., Liu, J., Li, J., Li, Y., Le, V. M., Li, S., Liang, X., Liu, L., & Liu, J. (2019). miR-139-5p reverses stemness maintenance and metastasis of colon cancer stem-like cells by targeting E2-2. J Cell Physiol, 234(12), 22703–22718. https://doi.org/10.1002/jcp.28836.

    Article  CAS  PubMed  Google Scholar 

  43. Ke, J., Wu, X., Wu, X., He, X., Lian, L., Zou, Y., He, X., Wang, H., Luo, Y., Wang, L., & Lan, P. (2012). A subpopulation of CD24(+) cells in colon cancer cell lines possess stem cell characteristics. Neoplasma, 59(3), 282–288. https://doi.org/10.4149/neo_2012_036.

    Article  CAS  PubMed  Google Scholar 

  44. atel, S., Waghela, B., Shah, K., Vaidya, F., Mirza, S., Patel, S., Pathak, C., & Rawal, R. (2018). Silibinin, a natural blend in polytherapy formulation for targeting Cd44v6 expressing colon cancer stem cells. Scientific Reports, 8(1), 16985. https://doi.org/10.1038/s41598-018-35069-0.

    Article  CAS  Google Scholar 

  45. Zhang, H. (2020). CCND1 silencing suppresses liver cancer stem cell differentiation through inhibiting autophagy. Human Cell, 33(1), 140–147. https://doi.org/10.1007/s13577-019-00295-9.

    Article  CAS  PubMed  Google Scholar 

  46. Wu, D. M., Zheng, Z. H., Zhang, Y. B., Fan, S. H., Zhang, Z. F., Wang, Y. J., Zheng, Y. L., & Lu, J. (2019). Down-regulated lncRNA DLX6-AS1 inhibits tumorigenesis through STAT3 signaling pathway by suppressing CADM1 promoter methylation in liver cancer stem cells. Journal of Experimental & Clinical Cancer Research, 38(1), 237. https://doi.org/10.1186/s13046-019-1239-3.

    Article  CAS  Google Scholar 

  47. Ran, R. Z., Chen, J., Cui, L. J., Lin, X. L., Fan, M. M., Cong, Z. Z., Zhang, H., Tan, W. F., Zhang, G. Q., & Zhang, Y. J. (2019). miR-194 inhibits liver cancer stem cell expansion by regulating RAC1 pathway. Experimental Cell Research, 378(1), 66–75. https://doi.org/10.1016/j.yexcr.2019.03.007.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, C., Cai, W. C., Dong, Z. T., Guo, J. W., Zhao, Y. J., Sui, C. J., & Yang, J. M. (2019). lncARSR promotes liver cancer stem cells expansion via STAT3 pathway. Gene, 687, 73–81. https://doi.org/10.1016/j.gene.2018.10.087.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, R., Li, Y., Tsung, A., Huang, H., Du, Q., Yang, M., Deng, M., Xiong, S., Wang, X., Zhang, L., Geller, D. A., Cheng, B., & Billiar, T. R. (2018). iNOS promotes CD24(+)CD133(+) liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 115(43), E10127–E10136. https://doi.org/10.1073/pnas.1722100115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, F., Kong, X., Lv, L., & Gao, J. (2015). MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal. FEBS Letters, 589(4), 500–506. https://doi.org/10.1016/j.febslet.2015.01.009.

    Article  CAS  PubMed  Google Scholar 

  51. Ding, W., You, H., Dang, H., LeBlanc, F., Galicia, V., Lu, S. C., Stiles, B., & Rountree, C. B. (2010). Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology, 52(3), 945–953. https://doi.org/10.1002/hep.23748.

    Article  CAS  PubMed  Google Scholar 

  52. Ding, W., Mouzaki, M., You, H., Laird, J. C., Mato, J., Lu, S. C., & Rountree, C. B. (2009). CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology, 49(4), 1277–1286. https://doi.org/10.1002/hep.22743.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, K., Che, S., Pan, C., Su, Z., Zheng, S., Yang, S., Zhang, H., Li, W., Wang, W., & Liu, J. (2018). The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. Journal of Cellular and Molecular Medicine, 22(7), 3679–3690. https://doi.org/10.1111/jcmm.13651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xia, W., Lo, C. M., Poon, R. Y. C., Cheung, T. T., Chan, A. C. Y., Chen, L., Yang, S., Tsao, G. S. W., & Wang, X. Q. (2017). Smad inhibitor induces CSC differentiation for effective chemosensitization in cyclin D1- and TGF-beta/Smad-regulated liver cancer stem cell-like cells. Oncotarget, 8(24), 38811–38824. https://doi.org/10.18632/oncotarget.16402.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jung, J. W., Yoon, S. M., Kim, S., Jeon, Y. H., Yoon, B. H., Yang, S. G., Kim, M. K., Choe, S., & Kuo, M. M. (2016). Bone morphogenetic protein-9 is a potent growth inhibitor of hepatocellular carcinoma and reduces the liver cancer stem cells population. Oncotarget, 7(45), 73754–73768. https://doi.org/10.18632/oncotarget.12062.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Su, R., Nan, H., Guo, H., Ruan, Z., Jiang, L., Song, Y., & Nan, K. (2016). Associations of components of PTEN/AKT/mTOR pathway with cancer stem cell markers and prognostic value of these biomarkers in hepatocellular carcinoma. Hepatology Research, 46(13), 1380–1391. https://doi.org/10.1111/hepr.12687.

    Article  CAS  PubMed  Google Scholar 

  57. ang, L., Zhang, H. B., Li, H., Fu, Y., & Yang, G. S. (2012). miR-548c-5p inhibits proliferation and migration and promotes apoptosis in CD90(+) HepG2 cells. Radiology and Oncology, 46(3), 233–241. https://doi.org/10.2478/v10019-012-0025-z.

    Article  CAS  Google Scholar 

  58. Wu, J., Zhu, P., Lu, T., Du, Y., Wang, Y., He, L., Ye, B., Liu, B., Yang, L., Wang, J., Gu, Y., Lan, J., Hao, Y., He, L., & Fan, Z. (2019). The long non-coding RNA LncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. Journal of Hepatology, 70(5), 918–929. https://doi.org/10.1016/j.jhep.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, J., Fang, C., Qu, M., Wu, H., Wang, X., Zhang, H., Ma, H., Zhang, Z., Huang, Y., Shi, L., Liang, S., Gao, Z., Song, W., & Wang, X. (2018). CD13 inhibition enhances cytotoxic effect of chemotherapy agents. Frontiers in Pharmacology, 9, 1042. https://doi.org/10.3389/fphar.2018.01042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dou, C., Fang, C., Zhao, Y., Fu, X., Zhang, Y., Zhu, D., Wu, H., Liu, H., Zhang, J., Xu, W., Liu, Z., Wang, H., Li, D., & Wang, X. (2017). BC-02 eradicates liver cancer stem cells by upregulating the ROS-dependent DNA damage. International Journal of Oncology, 51(6), 1775–1784. https://doi.org/10.3892/ijo.2017.4159.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng, Y. B., Gong, J. H., Liu, X. J., Li, Y., & Zhen, Y. S. (2017). A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis. Molecular Carcinogenesis, 56(5), 1395–1404. https://doi.org/10.1002/mc.22600.

    Article  CAS  PubMed  Google Scholar 

  62. Sun, Z. P., Zhang, J., Shi, L. H., Zhang, X. R., Duan, Y., Xu, W. F., Dai, G., & Wang, X. J. (2015). Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition. Biomedicine & Pharmacotherapy, 76, 65–72. https://doi.org/10.1016/j.biopha.2015.10.023.

    Article  CAS  Google Scholar 

  63. Kim, H. M., Haraguchi, N., Ishii, H., Ohkuma, M., Okano, M., Mimori, K., Eguchi, H., Yamamoto, H., Nagano, H., Sekimoto, M., Doki, Y., & Mori, M. (2012). Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Annals of Surgical Oncology, 19(Suppl 3), S539–S548. https://doi.org/10.1245/s10434-011-2040-5.

    Article  PubMed  Google Scholar 

  64. i, B., Liu, D., Yang, P., Li, H. Y., & Wang, D. (2019). miR-613 inhibits liver cancer stem cell expansion by regulating SOX9 pathway. Gene, 707, 78–85. https://doi.org/10.1016/j.gene.2019.05.015.

    Article  CAS  Google Scholar 

  65. Wang, X., Sun, W., Shen, W., Xia, M., Chen, C., Xiang, D., Ning, B., Cui, X., Li, H., Li, X., Ding, J., & Wang, H. (2016). Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. Journal of Hepatology, 64(6), 1283–1294. https://doi.org/10.1016/j.jhep.2016.01.019.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, R., Sun, Q., Wang, P., Liu, M., Xiong, S., Luo, J., Huang, H., Du, Q., Geller, D. A., & Cheng, B. (2016). Notch and Wnt/beta-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget, 7(5), 5754–5768. https://doi.org/10.18632/oncotarget.6805.

    Article  PubMed  Google Scholar 

  67. Gedaly, R., Galuppo, R., Musgrave, Y., Angulo, P., Hundley, J., Shah, M., Daily, M. F., Chen, C., Cohen, D. A., Spear, B. T., & Evers, B. M. (2013). PKI-587 and sorafenib alone and in combination on inhibition of liver cancer stem cell proliferation. The Journal of Surgical Research, 185(1), 225–230. https://doi.org/10.1016/j.jss.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, K., Li, J., Li, J., Sun, J., Guo, Y., Tian, H., Li, L., Zhang, C., Shi, M., Kong, G., & Li, Z. (2019). Ring1 promotes the transformation of hepatic progenitor cells into cancer stem cells through the Wnt/beta-catenin signaling pathway. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.29496.

  69. Li, T. Y., & Chiang, B. H. (2019). 4-Acetylantroquinonol B from antrodia cinnamomea enhances immune function of dendritic cells against liver cancer stem cells. Biomedicine & Pharmacotherapy, 109, 2262–2269. https://doi.org/10.1016/j.biopha.2018.11.101.

    Article  CAS  Google Scholar 

  70. Jiang, Z. B., Ma, B. Q., Liu, S. G., Li, J., Yang, G. M., Hou, Y. B., Si, R. H., Gao, P., & Yan, H. T. (2019). miR-365 regulates liver cancer stem cells via RAC1 pathway. Molecular Carcinogenesis, 58(1), 55–65. https://doi.org/10.1002/mc.22906.

    Article  CAS  PubMed  Google Scholar 

  71. Qin, X. Y., Suzuki, H., Honda, M., Okada, H., Kaneko, S., Inoue, I., Ebisui, E., Hashimoto, K., Carninci, P., Kanki, K., Tatsukawa, H., Ishibashi, N., Masaki, T., Matsuura, T., Kagechika, H., Toriguchi, K., Hatano, E., Shirakami, Y., Shiota, G., Shimizu, M., Moriwaki, H., & Kojima, S. (2018). Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4969–4974. https://doi.org/10.1073/pnas.1802279115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, C., Fu, S. Y., Wang, M. D., Yu, W. B., Cui, Q. S., Wang, H. R., Huang, H., Dong, W., Zhang, W. W., Li, P. P., Lin, C., Pan, Z. Y., Yang, Y., Wu, M. C., & Zhou, W. P. (2017). Zinc finger protein X-linked promotes expansion of EpCAM(+) cancer stem-like cells in hepatocellular carcinoma. Molecular Oncology, 11(5), 455–469. https://doi.org/10.1002/1878-0261.12036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu, M., Li, W., Lu, Y., Dong, X., Lin, B., Chen, Y., Zhang, X., Guo, J., & Li, M. (2017). HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. International Journal of Cancer, 140(6), 1346–1355. https://doi.org/10.1002/ijc.30553.

    Article  CAS  PubMed  Google Scholar 

  74. io, K., Yamashita, T., Okada, H., Kondo, M., Hayashi, T., Hara, Y., Nomura, Y., Zeng, S. S., Yoshida, M., Hayashi, T., Sunagozaka, H., Oishi, N., Honda, M., & Kaneko, S. (2015). Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. Journal of Hepatology, 63(5), 1164–1172. https://doi.org/10.1016/j.jhep.2015.06.009.

    Article  CAS  Google Scholar 

  75. Tyms, A. S. (1986). Polyamine inhibitors. The Journal of Antimicrobial Chemotherapy, 17(2), 131–135. https://doi.org/10.1093/jac/17.2.131.

    Article  CAS  PubMed  Google Scholar 

  76. Yamashita, T., Honda, M., Nio, K., Nakamoto, Y., Yamashita, T., Takamura, H., Tani, T., Zen, Y., & Kaneko, S. (2010). Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Research, 70(11), 4687–4697. https://doi.org/10.1158/0008-5472.CAN-09-4210.

    Article  CAS  PubMed  Google Scholar 

  77. Su, M., Wang, P., Wang, X., Zhang, M., Wei, S., Liu, K., Han, S., Han, X., Deng, Y., & Shen, L. (2019). Nuclear CD44 mediated by importin beta participated in naive genes transcriptional regulation in C3A-iCSCs. International Journal of Biological Sciences, 15(6), 1252–1260. https://doi.org/10.7150/ijbs.28235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, S., Cho, C. Y., Lee, D., Song, D. G., Kim, H. J., Jung, J. W., Kim, J. E., Park, D., Lee, H., Um, H., Park, J., Choi, Y., Kim, Y., Nam, S. H., & Lee, J. W. (2018). CD133-induced TM4SF5 expression promotes sphere growth via recruitment and blocking of protein tyrosine phosphatase receptor type F (PTPRF). Cancer Letters, 438, 219–231. https://doi.org/10.1016/j.canlet.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  79. Lee, J. H., Hur, W., Hong, S. W., Kim, J. H., Kim, S. M., Lee, E. B., & Yoon, S. K. (2017). ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1alpha. Oncology Reports, 37(2), 813–822. https://doi.org/10.3892/or.2016.5293.

    Article  CAS  PubMed  Google Scholar 

  80. Zou, H., Cao, X., Xiao, Q., Sheng, X., Ren, K., Quan, M., Song, Z., Li, D., Zheng, Y., Zeng, W., Cao, J., & Peng, Y. (2016). Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line. Oncology Reports, 36(3), 1731–1738. https://doi.org/10.3892/or.2016.4973.

    Article  CAS  PubMed  Google Scholar 

  81. Vilchez, V., Turcios, L., Zaytseva, Y., Stewart, R., Lee, E. Y., Maynard, E., Shah, M. B., Daily, M. F., Tzeng, C. W., Davenport, D., Castellanos, A. L., Krohmer, S., Hosein, P. J., Evers, B. M., & Gedaly, R. (2016). Cancer stem cell marker expression alone and in combination with microvascular invasion predicts poor prognosis in patients undergoing transplantation for hepatocellular carcinoma. American Journal of Surgery, 212(2), 238–245. https://doi.org/10.1016/j.amjsurg.2015.12.019.

    Article  PubMed  Google Scholar 

  82. Yan, H., Dong, X., Zhong, X., Ye, J., Zhou, Y., Yang, X., Shen, J., & Zhang, J. (2014). Inhibitions of epithelial to mesenchymal transition and cancer stem cells-like properties are involved in miR-148a-mediated anti-metastasis of hepatocellular carcinoma. Molecular Carcinogenesis, 53(12), 960–969. https://doi.org/10.1002/mc.22064.

    Article  CAS  PubMed  Google Scholar 

  83. Cheng, Z., Lei, Z., Yang, P., Si, A., Xiang, D., Zhou, J., & Huser, N. (2019). Long non-coding RNA THOR promotes liver cancer stem cells expansion via beta-catenin pathway. Gene, 684, 95–103. https://doi.org/10.1016/j.gene.2018.10.051.

    Article  CAS  PubMed  Google Scholar 

  84. Zeng, C., Zhang, Y., Park, S. C., Eun, J. R., Nguyen, N. T., Tschudy-Seney, B., Jung, Y. J., Theise, N. D., Zern, M. A., & Duan, Y. (2015). CD34(+) liver cancer stem cells were formed by fusion of hepatobiliary stem/progenitor cells with hematopoietic precursor-derived myeloid intermediates. Stem Cells and Development, 24(21), 2467–2478. https://doi.org/10.1089/scd.2015.0202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, S. C., Zeng, C., Tschudy-Seney, B., Nguyen, N. T., Eun, J. R., Zhang, Y., Ramsamooj, R., Zhang, Y., Zhao, M., Theise, N. D., Zhou, H., Zern, M. A., & Duan, Y. (2015). Clonogenically culturing and expanding CD34+ liver cancer stem cells in vitro. Stem Cells and Development, 24(13), 1506–1514. https://doi.org/10.1089/scd.2015.0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park, S. C., Nguyen, N. T., Eun, J. R., Zhang, Y., Jung, Y. J., Tschudy-Seney, B., Trotsyuk, A., Lam, A., Ramsamooj, R., Zhang, Y., Theise, N. D., Zern, M. A., & Duan, Y. (2015). Identification of cancer stem cell subpopulations of CD34(+) PLC/PRF/5 that result in three types of human liver carcinomas. Stem Cells and Development, 24(8), 1008–1021. https://doi.org/10.1089/scd.2014.0405.

    Article  CAS  PubMed  Google Scholar 

  87. Jiang, X., Liu, F., Wang, Y., & Gao, J. (2019). Secreted protein acidic and rich in cysteine promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells and acquisition of cancerstem cell phenotypes. Journal of Gastroenterology and Hepatology, 34(10), 1860–1868. https://doi.org/10.1111/jgh.14692.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, J., Pei, Y., Yang, W., Yang, W., Chen, B., Zhao, X., & Long, S. (2019). Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidative-nitrosative stress signals. Molecular Carcinogenesis, 58(3), 334–343. https://doi.org/10.1002/mc.22931.

    Article  CAS  PubMed  Google Scholar 

  89. Chen, X., Huan, H., Liu, C., Luo, Y., Shen, J., Zhuo, Y., Zhang, Z., & Qian, C. (2019). Deacetylation of beta-catenin by SIRT1 regulates self-renewal and oncogenesis of liver cancer stem cells. Cancer Letters, 463, 1–10. https://doi.org/10.1016/j.canlet.2019.07.021.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Y., Zhu, P., Luo, J., Wang, J., Liu, Z., Wu, W., Du, Y., Ye, B., Wang, D., He, L., Ren, W., Wang, J., Sun, X., Chen, R., Tian, Y., & Fan, Z. (2019). LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J, 38(17), e101110. https://doi.org/10.15252/embj.2018101110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, Y., Zhou, B., Luo, H., Mao, J., Huang, Y., Zhang, K., Mei, C., Yan, Y., Jin, H., Gao, J., Su, Z., Pang, P., Li, D., & Shan, H. (2019). ZnAs@SiO2 nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics, 9(15), 4391–4408. https://doi.org/10.7150/thno.32462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qureshi-Baig, K., Kuhn, D., Viry, E., Pozdeev, V. I., Schmitz, M., Rodriguez, F., Ullmann, P., Koncina, E., Nurmik, M., Frasquilho, S., Nazarov, P. V., Zuegel, N., Boulmont, M., Karapetyan, Y., Antunes, L., Val, D., Mittelbronn, M., Janji, B., Haan, S., & Letellier, E. (2019). Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy, 1–17. https://doi.org/10.1080/15548627.2019.1687213.

  93. Chaudhary, A. K., Mondal, G., Kumar, V., Kattel, K., & Mahato, R. I. (2017). Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Letters, 402, 1–8. https://doi.org/10.1016/j.canlet.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Suetsugu, A., Nagaki, M., Aoki, H., Motohashi, T., Kunisada, T., & Moriwaki, H. (2006). Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochemical and Biophysical Research Communications, 351(4), 820–824. https://doi.org/10.1016/j.bbrc.2006.10.128.

    Article  CAS  PubMed  Google Scholar 

  95. Song, Y., Park, I. S., Kim, J., & Seo, H. R. (2019). Actinomycin D inhibits the expression of the cystine/glutamate transporter xCT via attenuation of CD133 synthesis in CD133(+) HCC. Chemico-Biological Interactions, 309, 108713. https://doi.org/10.1016/j.cbi.2019.06.026.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, K., Che, S., Su, Z., Zheng, S., Zhang, H., Yang, S., Li, W., & Liu, J. (2018). CD90 promotes cell migration, viability and sphereforming ability of hepatocellular carcinoma cells. International Journal of Molecular Medicine, 41(2), 946–954. https://doi.org/10.3892/ijmm.2017.3314.

    Article  CAS  PubMed  Google Scholar 

  97. Liu, Z., Dai, X., Wang, T., Zhang, C., Zhang, W., Zhang, W., Zhang, Q., Wu, K., Liu, F., Liu, Y., & Wu, J. (2017). Hepatitis B virus PreS1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Letters, 400, 149–160. https://doi.org/10.1016/j.canlet.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  98. Fausto, N., & Campbell, J. S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mechanisms of Development, 120(1), 117–130. https://doi.org/10.1016/s0925-4773(02)00338-6.

    Article  CAS  PubMed  Google Scholar 

  99. Hashimoto, O., Shimizu, K., Semba, S., Chiba, S., Ku, Y., Yokozaki, H., & Hori, Y. (2011). Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology, 78(4), 181–192. https://doi.org/10.1159/000325538.

    Article  CAS  PubMed  Google Scholar 

  100. mmervoll, H., Hoem, D., Sakariassen, P. O., Steffensen, O. J., & Molven, A. (2008). Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer, 8, 48. https://doi.org/10.1186/1471-2407-8-48.

    Article  CAS  Google Scholar 

  101. Osmond, T. L., Broadley, K. W., & McConnell, M. J. (2010). Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein. International Journal of Molecular Medicine, 25(6), 883–888. https://doi.org/10.3892/ijmm_00000418.

    Article  CAS  PubMed  Google Scholar 

  102. Lv, D., Ma, Q. H., Duan, J. J., Wu, H. B., Zhao, X. L., Yu, S. C., & Bian, X. W. (2016). Optimized dissociation protocol for isolating human glioma stem cells from tumorspheres via fluorescence-activated cell sorting. Cancer Letters, 377(1), 105–115. https://doi.org/10.1016/j.canlet.2016.04.022.

    Article  CAS  PubMed  Google Scholar 

  103. Sakariassen, P. O., Immervoll, H., & Chekenya, M. (2007). Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia, 9(11), 882–892. https://doi.org/10.1593/neo.07658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., & Buck, D. W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 90(12), 5013-5021. https://www.ncbi.nlm.nih.gov/pubmed/9389721

  105. Annabi, B., Lachambre, M. P., Plouffe, K., Sartelet, H., & Beliveau, R. (2009). Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Molecular Carcinogenesis, 48(10), 910–919. https://doi.org/10.1002/mc.20541.

    Article  CAS  PubMed  Google Scholar 

  106. Yang, Y., Hao, E., Pan, X., Tan, D., Du, Z., Xie, J., Hou, X., Deng, J., & Wei, K. (2019). Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY), 11(19), 8347–8361. https://doi.org/10.18632/aging.102323.

    Article  CAS  Google Scholar 

  107. Zhou, X., Chen, L., Wang, A., Ma, Y., Zhang, H., & Zhu, Y. (2015). Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research. Colloids and Surfaces, B: Biointerfaces, 134, 431–439. https://doi.org/10.1016/j.colsurfb.2015.07.030.

    Article  CAS  PubMed  Google Scholar 

  108. Simbulan-Rosenthal, C. M., Dougherty, R., Vakili, S., Ferraro, A. M., Kuo, L. W., Alobaidi, R., Aljehane, L., Gaur, A., Sykora, P., Glasgow, E., Agarwal, S., & Rosenthal, D. S. (2019). CRISPR-Cas9 knockdown and induced expression of CD133 reveal essential roles in melanoma invasion and metastasis. Cancers (Basel), 11(10). https://doi.org/10.3390/cancers11101490.

  109. Lin, X., Chen, W., Wei, F., Zhou, B. P., Hung, M. C., & Xie, X. (2017). Nanoparticle delivery of miR-34a eradicates long-term-cultured breast cancer stem cells via targeting C22ORF28 directly. Theranostics, 7(19), 4805–4824. https://doi.org/10.7150/thno.20771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, R., An, L. Y., Miao, Q. F., Li, F. M., Han, Y., Wang, H. X., Liu, D. P., Chen, R., & Tang, S. Q. (2016). Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes. Oncotarget, 7(24), 35894–35916. https://doi.org/10.18632/oncotarget.9116.

    Article  PubMed  PubMed Central  Google Scholar 

  111. ang, R., Tang, Q., Miao, F., An, Y., Li, M., Han, Y., Wang, X., Wang, J., Liu, P., & Chen, R. (2015). Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice. International Journal of Nanomedicine, 10, 7345–7358. https://doi.org/10.2147/IJN.S93758.

    Article  CAS  Google Scholar 

  112. Quan, M. F., Xiao, L. H., Liu, Z. H., Guo, H., Ren, K. Q., Liu, F., Cao, J. G., & Deng, X. Y. (2013). 8-bromo-7-methoxychrysin inhibits properties of liver cancer stem cells via downregulation of beta-catenin. World Journal of Gastroenterology, 19(43), 7680–7695. https://doi.org/10.3748/wjg.v19.i43.7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boulter, L., Guest, R. V., Kendall, T. J., Wilson, D. H., Wojtacha, D., Robson, A. J., Ridgway, R. A., Samuel, K., Van Rooijen, N., Barry, S. T., Wigmore, S. J., Sansom, O. J., & Forbes, S. J. (2015). WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. The Journal of Clinical Investigation, 125(3), 1269–1285. https://doi.org/10.1172/JCI76452.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dezso, K., Paku, S., Papp, V., Turanyi, E., & Nagy, P. (2009). Architectural and immunohistochemical characterization of biliary ductules in normal human liver. Stem Cells and Development, 18(10), 1417–1422. https://doi.org/10.1089/scd.2009.0110.

    Article  CAS  PubMed  Google Scholar 

  115. Yin, S., Li, J., Hu, C., Chen, X., Yao, M., Yan, M., Jiang, G., Ge, C., Xie, H., Wan, D., Yang, S., Zheng, S., & Gu, J. (2007). CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer, 120(7), 1444–1450. https://doi.org/10.1002/ijc.22476.

    Article  CAS  PubMed  Google Scholar 

  116. Hur, W., Ryu, J. Y., Kim, H. U., Hong, S. W., Lee, E. B., Lee, S. Y., & Yoon, S. K. (2017). Systems approach to characterize the metabolism of liver cancer stem cells expressing CD133. Scientific Reports, 7, 45557. https://doi.org/10.1038/srep45557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, S. H., Hyun, S. K., Kim, H. B., Kang, C. D., & Kim, S. H. (2016). Potential role of CD133 expression in the susceptibility of human liver cancer stem-like cells to TRAIL. Oncology Research, 24(6), 495–509. https://doi.org/10.3727/096504016X14685034103950.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yoshikawa, S., Zen, Y., Fujii, T., Sato, Y., Ohta, T., Aoyagi, Y., & Nakanuma, Y. (2009). Characterization of CD133+ parenchymal cells in the liver: histology and culture. World Journal of Gastroenterology, 15(39), 4896–4906. https://doi.org/10.3748/wjg.15.4896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. amashita, M., Wada, H., Eguchi, H., Ogawa, H., Yamada, D., Noda, T., Asaoka, T., Kawamoto, K., Gotoh, K., Umeshita, K., Doki, Y., & Mori, M. (2016). A CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma. International Journal of Oncology, 49(1), 89–98. https://doi.org/10.3892/ijo.2016.3496.

    Article  CAS  Google Scholar 

  120. Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H. M., Akita, H., Takiuchi, D., Hatano, H., Nagano, H., Barnard, G. F., Doki, Y., & Mori, M. (2010). CD13 is a therapeutic target in human liver cancer stem cells. The Journal of Clinical Investigation, 120(9), 3326–3339. https://doi.org/10.1172/JCI42550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yamashita, T., Honda, M., Nakamoto, Y., Baba, M., Nio, K., Hara, Y., Zeng, S. S., Hayashi, T., Kondo, M., Takatori, H., Yamashita, T., Mizukoshi, E., Ikeda, H., Zen, Y., Takamura, H., Wang, X. W., & Kaneko, S. (2013). Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology, 57(4), 1484–1497. https://doi.org/10.1002/hep.26168.

    Article  CAS  PubMed  Google Scholar 

  122. Inada, M., Benten, D., Cheng, K., Joseph, B., Berishvili, E., Badve, S., Logdberg, L., Dabeva, M., & Gupta, S. (2008). Stage-specific regulation of adhesion molecule expression segregates epithelial stem/progenitor cells in fetal and adult human livers. Hepatology International, 2(1), 50–62. https://doi.org/10.1007/s12072-007-9023-4.

    Article  PubMed  Google Scholar 

  123. Bae, J. S., Noh, S. J., Jang, K. Y., Park, H. S., Chung, M. J., Park, C. K., & Moon, W. S. (2012). Expression and role of epithelial cell adhesion molecule in dysplastic nodule and hepatocellular carcinoma. International Journal of Oncology, 41(6), 2150–2158. https://doi.org/10.3892/ijo.2012.1631.

    Article  CAS  PubMed  Google Scholar 

  124. Schmelzer, E., & Reid, L. M. (2008). EpCAM expression in normal, non-pathological tissues. Frontiers in Bioscience, 13, 3096–3100. https://doi.org/10.2741/2911.

    Article  CAS  PubMed  Google Scholar 

  125. Schmelzer, E., Zhang, L., Bruce, A., Wauthier, E., Ludlow, J., Yao, H. L., Moss, N., Melhem, A., McClelland, R., Turner, W., Kulik, M., Sherwood, S., Tallheden, T., Cheng, N., Furth, M. E., & Reid, L. M. (2007). Human hepatic stem cells from fetal and postnatal donors. The Journal of Experimental Medicine, 204(8), 1973–1987. https://doi.org/10.1084/jem.20061603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tsuchiya, A., Suda, T., Oda, C., Kimura, A., Hosaka, K., Kimura, N., Tominaga, K., Hayashi, K., Takamura, M., & Terai, S. (2019). EpCAM- and/or NCAM-expressing hepatocellular carcinoma in which behavior of hepatic progenitor cell marker-positive cells are followed. Case Reports in Gastroenterology, 13(1), 118–124. https://doi.org/10.1159/000498913.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, R. R., Zheng, Y. W., Li, B., Nie, Y. Z., Ueno, Y., Tsuchida, T., & Taniguchi, H. (2018). Hepatic stem cells with self-renewal and liver repopulation potential are harbored in CDCP1-positive subpopulations of human fetal liver cells. Stem Cell Research & Therapy, 9(1), 29. https://doi.org/10.1186/s13287-017-0747-3.

    Article  CAS  Google Scholar 

  128. Thakolwiboon, S., Zhu, J., Liang, Q., Welling, T. H., Zhang, M., & Lubman, D. M. (2014). Heterogeneity of the CD90(+) population in different stages of hepatocarcinogenesis. The Journal of Proteomics & Bioinformatics, 7(10), 296–302. https://doi.org/10.4172/jpb.1000332.

    Article  Google Scholar 

  129. Weiss, T. S., & Dayoub, R. (2017). Thy-1 (CD90)-Positive Hepatic Progenitor Cells, hepatoctyes, and non-parenchymal liver cells isolated from human livers. Methods in Molecular Biology, 1506, 75–89. https://doi.org/10.1007/978-1-4939-6506-9_5.

    Article  CAS  PubMed  Google Scholar 

  130. Conigliaro, A., Costa, V., Lo Dico, A., Saieva, L., Buccheri, S., Dieli, F., Manno, M., Raccosta, S., Mancone, C., Tripodi, M., De Leo, G., & Alessandro, R. (2015). CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Molecular Cancer, 14, 155. https://doi.org/10.1186/s12943-015-0426-x.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lu, J. W., Chang, J. G., Yeh, K. T., Chen, R. M., Tsai, J. J., & Hu, R. M. (2011). Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochemica, 113(8), 833–838. https://doi.org/10.1016/j.acthis.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  132. Ho, C. M., Ho, S. L., Shun, C. T., Lee, P. H., Chen, Y. H., Chien, C. S., Chen, H. L., & Hu, R. H. (2017). Histopathological evidence for the existence of primary liver progenitor cell cancer: insight from cancer stem cell pathobiology. Discovery Medicine, 23(124), 41-50. https://www.ncbi.nlm.nih.gov/pubmed/28245426

  133. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., Chu, P. W., Lam, C. T., Poon, R. T., & Fan, S. T. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell, 13(2), 153–166. https://doi.org/10.1016/j.ccr.2008.01.013.

    Article  CAS  PubMed  Google Scholar 

  134. Ho, D. W., Tsui, Y. M., Sze, K. M., Chan, L. K., Cheung, T. T., Lee, E., Sham, P. C., Tsui, S. K., Lee, T. K., & Ng, I. O. (2019). Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Letters, 459, 176–185. https://doi.org/10.1016/j.canlet.2019.06.002.

    Article  CAS  PubMed  Google Scholar 

  135. Qiu, Q., Hernandez, J. C., Dean, A. M., Rao, P. H., & Darlington, G. J. (2011). CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells and Development, 20(12), 2177–2188. https://doi.org/10.1089/scd.2010.0352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, L., Chen, J., Ge, C., Zhao, F., Chen, T., Tian, H., Li, J., & Li, H. (2019). CD24 isoform a promotes cell proliferation, migration and invasion and is downregulated by EGR1 in hepatocellular carcinoma. Oncotargets and Therapy, 12, 1705–1716. https://doi.org/10.2147/OTT.S196506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu, S., Yao, Y., Xu, G., Zhou, C., Zhang, Y., Sun, J., Jiang, R., Shao, Q., & Chen, Y. (2018). CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death & Disease, 9(6), 646. https://doi.org/10.1038/s41419-018-0681-z.

    Article  CAS  Google Scholar 

  138. Lee, T. K., Castilho, A., Cheung, V. C., Tang, K. H., Ma, S., & Ng, I. O. (2011). CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell, 9(1), 50–63. https://doi.org/10.1016/j.stem.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  139. Su, X., Shi, Y., Zou, X., Lu, Z. N., Xie, G., Yang, J. Y. H., Wu, C. C., Cui, X. F., He, K. Y., Luo, Q., Qu, Y. L., Wang, N., Wang, L., & Han, Z. G. (2017). Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics, 18(1), 946. https://doi.org/10.1186/s12864-017-4342-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, J. H., Gong, C., Guo, F. J., Zhou, X., Zhang, M. S., Qiu, H., Chao, T. F., Liu, Y., Qin, L., & Xiong, H. H. (2020). Knockdown of STIP1 inhibits the invasion of CD133positive cancer stemlike cells of the osteosarcoma MG63 cell line via the PI3K/Akt and ERK1/2 pathways. International Journal of Molecular Medicine, 46(6), 2251–2259. https://doi.org/10.3892/ijmm.2020.4764.

    Article  CAS  PubMed  Google Scholar 

  141. Weng, C. H., Wu, C. S., Wu, J. C., Kung, M. L., Wu, M. H., & Tai, M. H. (2020). Cisplatin-induced giant cells formation is involved in chemoresistance of melanoma cells. International Journal of Molecular Sciences, 21(21). https://doi.org/10.3390/ijms21217892.

  142. Lin, Q., Wu, Z., Yue, X., Yu, X., Wang, Z., Song, X., Xu, L., He, Y., Ge, Y., Tan, S., Wang, T., Song, H., Yuan, D., Gong, Y., Gao, L., Liang, X., & Ma, C. (2020). ZHX2 restricts hepatocellular carcinoma by suppressing stem cell-like traits through KDM2A-mediated H3K36 demethylation. EBioMedicine, 53, 102676. https://doi.org/10.1016/j.ebiom.2020.102676.

    Article  PubMed  PubMed Central  Google Scholar 

  143. hi, R., Liu, L., Wang, F., He, Y., Niu, Y., Wang, C., Zhang, X., Zhang, X., Zhang, H., Chen, M., & Wang, Y. (2020). Downregulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cellular Signalling, 76, 109810. https://doi.org/10.1016/j.cellsig.2020.109810.

    Article  CAS  Google Scholar 

  144. Chen, X., Chen, T., Zhang, L., Wang, Z., Zhou, Q., Huang, T., Ge, C., Xu, H., Zhu, M., Zhao, F., Yao, M., Tian, H., Li, H., Zhu, X., & Li, J. (2020). Cyclodextrin-mediated formation of porous RNA nanospheres and their application in synergistic targeted therapeutics of hepatocellular carcinoma. Biomaterials, 261, 120304. https://doi.org/10.1016/j.biomaterials.2020.120304.

    Article  CAS  PubMed  Google Scholar 

  145. Ferreri, A. J. M., Calimeri, T., Ponzoni, M., Curnis, F., Conte, G. M., Scarano, E., Rrapaj, E., De Lorenzo, D., Cattaneo, D., Fallanca, F., Nonis, A., Foppoli, M., Lopedote, P., Citterio, G., Politi, L. S., Sassone, M., Angelillo, P., Guggiari, E., Steffanoni, S., Tarantino, V., Ciceri, F., Bordignon, C., Anzalone, N., & Corti, A. (2020). Improving the antitumor activity of R-CHOP with NGR-hTNF in primary CNS lymphoma: final results of a phase 2 trial. Blood Advances, 4(15), 3648–3658. https://doi.org/10.1182/bloodadvances.2020002270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhai, M., Yang, Z., Zhang, C., Li, J., Jia, J., Zhou, L., Lu, R., Yao, Z., & Fu, Z. (2020). APN-mediated phosphorylation of BCKDK promotes hepatocellular carcinoma metastasis and proliferation via the ERK signaling pathway. Cell Death & Disease, 11(5), 396. https://doi.org/10.1038/s41419-020-2610-1.

    Article  CAS  Google Scholar 

  147. Cao, J., Zang, J., Kong, X., Zhao, C., Chen, T., Ran, Y., Dong, H., Xu, W., & Zhang, Y. (2019). Leucine ureido derivatives as aminopeptidase N inhibitors using click chemistry. Part II. Bioorganic & Medicinal Chemistry, 27(6), 978–990. https://doi.org/10.1016/j.bmc.2019.01.041.

    Article  CAS  Google Scholar 

  148. Lei, J. H., Yan, W., Luo, C. H., Guo, Y. M., Zhang, Y. Y., Wang, X. H., & Su, X. J. (2020). Cytotoxicity of nonylphenol on spermatogonial stem cells via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. World Journal of Stem Cells, 12(6), 500–513. https://doi.org/10.4252/wjsc.v12.i6.500.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yang, C. C., Chen, Y. T., Wallace, C. G., Chen, K. H., Cheng, B. C., Sung, P. H., Li, Y. C., Ko, S. F., Chang, H. W., & Yip, H. K. (2019). Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomedicine & Pharmacotherapy, 109, 658–670. https://doi.org/10.1016/j.biopha.2018.10.095.

    Article  CAS  Google Scholar 

  150. Sulaiman, A., McGarry, S., Chambers, J., Al-Kadi, E., Phan, A., Li, L., Mediratta, K., Dimitroulakos, J., Addison, C., Li, X., & Wang, L. (2020). Targeting hypoxia sensitizes TNBC to cisplatin and promotes inhibition of both bulk and cancer stem cells. International Journal of Molecular Sciences, 21(16). https://doi.org/10.3390/ijms21165788.

  151. hou, J., Wang, H., Che, J., Xu, L., Yang, W., Li, Y., & Zhou, W. (2020). Silencing of microRNA-135b inhibits invasion, migration, and stemness of CD24(+)CD44(+) pancreatic cancer stem cells through JADE-1-dependent AKT/mTOR pathway. Cancer Cell International, 20, 134. https://doi.org/10.1186/s12935-020-01210-1.

    Article  CAS  Google Scholar 

  152. Zhao, Y., Lu, Q., Li, C., Wang, X., Jiang, L., Huang, L., Wang, C., & Chen, H. (2019). PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation. Cell Death & Disease, 10(5), 359. https://doi.org/10.1038/s41419-019-1595-0.

    Article  CAS  Google Scholar 

  153. Wang, K. J., Wang, C., Dai, L. H., Yang, J., Huang, H., Ma, X. J., Zhou, Z., Yang, Z. Y., Xu, W. D., Hua, M. M., Lu, X., Zeng, S. X., Wang, H. Q., Zhang, Z. S., Cheng, Y. Q., Liu, D., Tian, Q. Q., Sun, Y. H., & Xu, C. L. (2019). Targeting an autocrine regulatory loop in cancer stem-like cells impairs the progression and chemotherapy resistance of bladder cancer. Clinical Cancer Research, 25(3), 1070–1086. https://doi.org/10.1158/1078-0432.CCR-18-0586.

    Article  CAS  PubMed  Google Scholar 

  154. Barzegar Behrooz, A., Syahir, A., & Ahmad, S. (2019). CD133: beyond a cancer stem cell biomarker. Journal of Drug Targeting, 27(3), 257–269. https://doi.org/10.1080/1061186X.2018.1479756.

    Article  CAS  PubMed  Google Scholar 

  155. Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170(6), 3369–3376. https://doi.org/10.4049/jimmunol.170.6.3369.

    Article  CAS  Google Scholar 

  156. Aghajani, M., Mansoori, B., Mohammadi, A., Asadzadeh, Z., & Baradaran, B. (2019). New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. Journal of Cellular Physiology, 234(12), 21642–21661. https://doi.org/10.1002/jcp.28824.

    Article  CAS  PubMed  Google Scholar 

  157. Huang, L., Yang, Y., Yang, F., Liu, S., Zhu, Z., Lei, Z., & Guo, J. (2018). Functions of EpCAM in physiological processes and diseases (Review). International Journal of Molecular Medicine, 42(4), 1771–1785. https://doi.org/10.3892/ijmm.2018.3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69(14), 5627–5629. https://doi.org/10.1158/0008-5472.CAN-09-0654.

    Article  CAS  PubMed  Google Scholar 

  159. Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23(34), 5748–5758. https://doi.org/10.1038/sj.onc.1207610.

    Article  CAS  PubMed  Google Scholar 

  160. Chaves-Perez, A., Mack, B., Maetzel, D., Kremling, H., Eggert, C., Harreus, U., & Gires, O. (2013). EpCAM regulates cell cycle progression via control of cyclin D1 expression. Oncogene, 32(5), 641–650. https://doi.org/10.1038/onc.2012.75.

    Article  CAS  PubMed  Google Scholar 

  161. Maaser, K., & Borlak, J. (2008). A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. British Journal of Cancer, 99(10), 1635–1643. https://doi.org/10.1038/sj.bjc.6604725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mina-Osorio, P. (2008). The moonlighting enzyme CD13: old and new functions to target. Trends in Molecular Medicine, 14(8), 361–371. https://doi.org/10.1016/j.molmed.2008.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wickstrom, M., Larsson, R., Nygren, P., & Gullbo, J. (2011). Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Science, 102(3), 501–508. https://doi.org/10.1111/j.1349-7006.2010.01826.x.

    Article  CAS  PubMed  Google Scholar 

  164. Kumar, A., Bhanja, A., Bhattacharyya, J., & Jaganathan, B. G. (2016). Multiple roles of CD90 in cancer. Tumour Biology, 37(9), 11611–11622. https://doi.org/10.1007/s13277-016-5112-0.

    Article  CAS  PubMed  Google Scholar 

  165. Chen, W. C., Chang, Y. S., Hsu, H. P., Yen, M. C., Huang, H. L., Cho, C. Y., Wang, C. Y., Weng, T. Y., Lai, P. T., Chen, C. S., Lin, Y. J., & Lai, M. D. (2015). Therapeutics targeting CD90-integrin-AMPK-CD133 signal axis in liver cancer. Oncotarget, 6(40), 42923–42937. https://doi.org/10.18632/oncotarget.5976.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Altevogt, P., Sammar, M., Huser, L., & Kristiansen, G. (2020). Novel insights into the function of CD24: A driving force in cancer. International Journal of Cancer. 10.1002/ijc.33249

  167. Jaggupilli, A., & Elkord, E. (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clinical & Developmental Immunology, 2012, 708036. https://doi.org/10.1155/2012/708036.

    Article  CAS  Google Scholar 

  168. Ayre, D. C., & Christian, S. L. (2016). CD24: a rheostat that modulates cell surface receptor signaling of diverse receptors. Frontiers in Cell and Development Biology, 4, 146. https://doi.org/10.3389/fcell.2016.00146.

    Article  Google Scholar 

  169. Wang, C., Wang, M. D., Cheng, P., Huang, H., Dong, W., Zhang, W. W., Li, P. P., Lin, C., Pan, Z. Y., Wu, M. C., & Zhou, W. P. (2017). Hepatitis B virus X protein promotes the stem-like properties of OV6(+) cancer cells in hepatocellular carcinoma. Cell Death & Disease, 8(1), e2560. https://doi.org/10.1038/cddis.2016.493.

    Article  CAS  Google Scholar 

  170. Haraguchi, N., Utsunomiya, T., Inoue, H., Tanaka, F., Mimori, K., Barnard, G. F., & Mori, M. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24(3), 506–513. https://doi.org/10.1634/stemcells.2005-0282.

    Article  CAS  PubMed  Google Scholar 

  171. Chiba, T., Kita, K., Zheng, Y. W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., & Taniguchi, H. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44(1), 240–251. https://doi.org/10.1002/hep.21227.

    Article  CAS  PubMed  Google Scholar 

  172. Shi, G. M., Xu, Y., Fan, J., Zhou, J., Yang, X. R., Qiu, S. J., Liao, Y., Wu, W. Z., Ji, Y., Ke, A. W., Ding, Z. B., He, Y. Z., Wu, B., Yang, G. H., Qin, W. Z., Zhang, W., Zhu, J., Min, Z. H., & Wu, Z. Q. (2008). Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. Journal of Cancer Research and Clinical Oncology, 134(11), 1155–1163. https://doi.org/10.1007/s00432-008-0407-1.

    Article  CAS  PubMed  Google Scholar 

  173. Marquardt, J. U., Raggi, C., Andersen, J. B., Seo, D., Avital, I., Geller, D., Lee, Y. H., Kitade, M., Holczbauer, A., Gillen, M. C., Conner, E. A., Factor, V. M., & Thorgeirsson, S. S. (2011). Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology, 54(3), 1031–1042. https://doi.org/10.1002/hep.24454.

    Article  CAS  PubMed  Google Scholar 

  174. Jeng, K. S., Sheen, I. S., Jeng, W. J., Yu, M. C., Hsiau, H. I., Chang, F. Y., & Tsai, H. H. (2013). Activation of the sonic hedgehog signaling pathway occurs in the CD133 positive cells of mouse liver cancer Hepa 1-6 cells. Oncotargets and Therapy, 6, 1047–1055. https://doi.org/10.2147/OTT.S44828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, R., Qian, N., Tao, K., You, N., Wang, X., & Dou, K. (2010). MicroRNAs involved in neoplastic transformation of liver cancer stem cells. Journal of Experimental & Clinical Cancer Research, 29, 169. https://doi.org/10.1186/1756-9966-29-169.

    Article  CAS  Google Scholar 

  176. Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, DNA damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019(6793957). https://doi.org/10.1155/2019/6793957.

  177. Kohara, H., Watanabe, K., Shintou, T., Nomoto, T., Okano, M., Shirai, T., Miyazaki, T., & Tabata, Y. (2013). The use of fluorescent indoline dyes for side population analysis. Biomaterials, 34(4), 1024–1032. https://doi.org/10.1016/j.biomaterials.2012.10.059.

    Article  CAS  PubMed  Google Scholar 

  178. Mathew, G., Timm Jr., E. A., Sotomayor, P., Godoy, A., Montecinos, V. P., Smith, G. J., & Huss, W. J. (2009). ABCG2-mediated DyeCycle Violet efflux defined side population in benign and malignant prostate. Cell Cycle, 8(7), 1053–1061. https://doi.org/10.4161/cc.8.7.8043.

    Article  CAS  PubMed  Google Scholar 

  179. Dotse, E., & Bian, Y. (2016). Isolation of colorectal cancer stem-like cells. Cytotechnology, 68(4), 609–619. https://doi.org/10.1007/s10616-014-9806-0.

    Article  CAS  PubMed  Google Scholar 

  180. Wang, L., Li, X., Zhang, W., Yang, Y., Meng, Q., Wang, C., Xin, X., Jiang, X., Song, S., Lu, Y., Pu, H., Gui, X., Li, T., Xu, J., Li, J., Jia, S., & Lu, D. (2019). miR24-2 promotes malignant progression of human liver cancer stem cells by enhancing tyrosine kinase src epigenetically. Molecular Therapy. https://doi.org/10.1016/j.ymthe.2019.10.015.

  181. Yan, X., Liu, X., Wang, Z., Cheng, Q., Ji, G., Yang, H., Wan, L., Ge, C., Zeng, Q., Huang, H., Xi, J., He, L., Nan, X., Yue, W., & Pei, X. (2019). MicroRNA4865p functions as a tumor suppressor of proliferation and cancer stemlike cell properties by targeting Sirt1 in liver cancer. Oncology Reports, 41(3) 1938-1948. https://doi.org/10.3892/or.2018.6930.

  182. Zhu, Y. T., Zhao, Z., Fu, X. Y., Luo, Y., Lei, C. Y., Chen, W., Li, F., Pang, S. Y., Chen, S. S., & Tan, W. L. (2014). The granulocyte macrophage-colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer. Stem Cell Research, 13(1), 111–122. https://doi.org/10.1016/j.scr.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  183. Zhu, Y. T., Lei, C. Y., Luo, Y., Liu, N., He, C. W., Chen, W., Li, F., Deng, Y. J., & Tan, W. L. (2013). A modified method for isolation of bladder cancer stem cells from a MB49 murine cell line. BMC Urology, 13, 57. https://doi.org/10.1186/1471-2490-13-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu, R., Yu, M., & Li, Y. L. (2018). Isolation, identification and biological characteristics of the stem cells from mucoepidermoid carcinoma of the salivary gland. Shanghai Kou Qiang Yi Xue, 27(1), 39-42. https://www.ncbi.nlm.nih.gov/pubmed/29946639

  185. Wang, N., Li, M. Y., Liu, Y., Yu, J., Ren, J., Zheng, Z., Wang, S., Yang, S., Yang, S. L., Liu, L. P., Hu, B. G., Chong, C. C., Merchant, J. L., Lai, P. B., & Chen, G. G. (2020). ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway. Cancer Letters, 472, 70–80. https://doi.org/10.1016/j.canlet.2019.12.026.

    Article  CAS  PubMed  Google Scholar 

  186. Han, S., Shin, H., Lee, J. K., Liu, Z., Rabadan, R., Lee, J., Shin, J., Lee, C., Yang, H., Kim, D., Kim, S. H., Kim, J., Oh, J. W., Kong, D. S., Lee, J. I., Seol, H. J., Choi, J. W., Kang, H. J., & Nam, D. H. (2019). Secretome analysis of patient-derived GBM tumor spheres identifies midkine as a potent therapeutic target. Experimental & Molecular Medicine, 51(12), 147. https://doi.org/10.1038/s12276-019-0351-y.

    Article  CAS  Google Scholar 

  187. Wang, C. H., Qi, S. T., Fan, J., Pan, J., Peng, J. X., Nie, J., Bao, Y., Liu, Y. W., Zhang, X., & Liu, Y. (2019). Identification of tumor stem-like cells in admanatimomatous craniopharyngioma and determination of these cells’ pathological significance. Journal of Neurosurgery, 1–11. https://doi.org/10.3171/2019.5.JNS19565.

  188. Wang, H., Paczulla, A. M., Konantz, M., & Lengerke, C. (2018). In vitro tumorigenic assay: the tumor spheres assay. Methods in Molecular Biology, 1692, 77–87. https://doi.org/10.1007/978-1-4939-7401-6_7.

    Article  CAS  PubMed  Google Scholar 

  189. Zheng, B. N., Ding, C. H., Chen, S. J., Zhu, K., Shao, J., Feng, J., Xu, W. P., Cai, L. Y., Zhu, C. P., Duan, W., Ding, J., Zhang, X., Luo, C., & Xie, W. F. (2019). Targeting PRMT5 activity inhibits the malignancy of hepatocellular carcinoma by promoting the transcription of HNF4alpha. Theranostics, 9(9), 2606–2617. https://doi.org/10.7150/thno.32344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ma, Y. S., Lv, Z. W., Yu, F., Chang, Z. Y., Cong, X. L., Zhong, X. M., Lu, G. X., Zhu, J., & Fu, D. (2018). MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. Journal of Experimental & Clinical Cancer Research, 37(1), 252. https://doi.org/10.1186/s13046-018-0927-8.

    Article  CAS  Google Scholar 

  191. Wen, Q., Xu, C., Zhou, J., Liu, N. M., Cui, Y. H., Quan, M. F., Cao, J. G., & Ren, K. Q. (2019). 8-bromo-7-methoxychrysin suppress stemness of SMMC-7721 cells induced by co-culture of liver cancer stem-like cells with hepatic stellate cells. BMC Cancer, 19(1), 224. https://doi.org/10.1186/s12885-019-5419-5.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Prasetyanti, P. R., Zimberlin, C., De Sousa, E. M. F., & Medema, J. P. (2013). Isolation and propagation of colon cancer stem cells. Methods in Molecular Biology, 1035, 247–259. https://doi.org/10.1007/978-1-62703-508-8_21.

    Article  CAS  PubMed  Google Scholar 

  193. Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785. https://doi.org/10.1093/jnci/djj495.

    Article  PubMed  Google Scholar 

  194. Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M. A., & Daidone, M. G. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511. https://doi.org/10.1158/0008-5472.CAN-05-0626.

    Article  CAS  PubMed  Google Scholar 

  195. Koenders, S. T. A., Wijaya, L. S., Erkelens, M. N., Bakker, A. T., van der Noord, V. E., van Rooden, E. J., Burggraaff, L., Putter, P. C., Botter, E., Wals, K., van den Elst, H., den Dulk, H., Florea, B. I., van de Water, B., van Westen, G. J. P., Mebius, R. E., Overkleeft, H. S., Le Devedec, S. E., & van der Stelt, M. (2019). Development of a retinal-based probe for the profiling of retinaldehyde dehydrogenases in cancer cells. ACS Central Science, 5(12), 1965–1974. https://doi.org/10.1021/acscentsci.9b01022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lokman, N. A., Price, Z. K., Hawkins, E. K., Macpherson, A. M., Oehler, M. K., & Ricciardelli, C. (2019). 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer. Cancers (Basel), 11(8). https://doi.org/10.3390/cancers11081187.

  197. Raved, D., Tokatly-Latzer, I., Anafi, L., Harari-Steinberg, O., Barshack, I., Dekel, B., & Pode-Shakked, N. (2019). Blastemal NCAM(+)ALDH1(+) Wilms' tumor cancer stem cells correlate with disease progression and poor clinical outcome: A pilot study. Pathology, Research and Practice, 215(8), 152491. https://doi.org/10.1016/j.prp.2019.152491.

    Article  CAS  PubMed  Google Scholar 

  198. Cao, H., Chu, X., Wang, Z., Guo, C., Shao, S., Xiao, J., Zheng, J., & Zhang, D. (2019). High FOXK1 expression correlates with poor outcomes in hepatocellular carcinoma and regulates stemness of hepatocellular carcinoma cells. Life Sciences, 228, 128–134. https://doi.org/10.1016/j.lfs.2019.04.068.

    Article  CAS  PubMed  Google Scholar 

  199. Upadhyaya, B., Liu, Y., & Dey, M. (2019). Phenethyl isothiocyanate exposure promotes oxidative stress and suppresses Sp1 transcription factor in cancer stem cells. International Journal of Molecular Sciences, 20(5). https://doi.org/10.3390/ijms20051027.

  200. Rodman, S. N., Spence, J. M., Ronnfeldt, T. J., Zhu, Y., Solst, S. R., O'Neill, R. A., Allen, B. G., Guan, X., Spitz, D. R., & Fath, M. A. (2016). Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin- and glutathione-dependent metabolism. Radiation Research, 186(4), 385–395. https://doi.org/10.1667/RR14463.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, W., Ma, H., Zhang, J., Zhu, L., Wang, C., & Yang, Y. (2017). Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Scientific Reports, 7(1), 13856. https://doi.org/10.1038/s41598-017-14364-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sakunrangsit, N., & Ketchart, W. (2019). Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/beta-catenin pathway in endocrine resistant breast cancer. Pharmacological Research, 150, 104517. https://doi.org/10.1016/j.phrs.2019.104517.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H., Chang, W. J., Li, X. Y., Zhang, N., Kong, J. J., & Wang, Y. F. (2014). Liver cancer stem cells are selectively enriched by low-dose cisplatin. Brazilian Journal of Medical and Biological Research, 47(6), 478–482. https://doi.org/10.1590/1414-431x20143415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tan, S., Yamashita, A., Gao, S. J., & Kurisawa, M. (2019). Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Acta Biomaterialia, 94, 320–329. https://doi.org/10.1016/j.actbio.2019.05.040.

    Article  CAS  PubMed  Google Scholar 

  205. Kong, Y., Lyu, N., Wu, J., Tang, H., Xie, X., Yang, L., Li, X., Wei, W., & Xie, X. (2018). Breast cancer stem cell markers CD44 and ALDH1A1 in serum: distribution and prognostic value in patients with primary breast cancer. Journal of Cancer, 9(20), 3728–3735. https://doi.org/10.7150/jca.28032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ma, S., Chan, K. W., Lee, T. K., Tang, K. H., Wo, J. Y., Zheng, B. J., & Guan, X. Y. (2008). Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research, 6(7), 1146–1153. https://doi.org/10.1158/1541-7786.MCR-08-0035.

    Article  CAS  PubMed  Google Scholar 

  207. Codony-Servat, J., Codony-Servat, C., Cardona, A. F., Gimenez-Capitan, A., Drozdowskyj, A., Berenguer, J., Bracht, J. W. P., Ito, M., Karachaliou, N., & Rosell, R. (2019). Cancer stem cell biomarkers in EGFR-mutation-positive non-small-cell lung cancer. Clinical Lung Cancer, 20(3), 167–177. https://doi.org/10.1016/j.cllc.2019.02.005.

    Article  CAS  PubMed  Google Scholar 

  208. Moreb, J. S., Ucar, D., Han, S., Amory, J. K., Goldstein, A. S., Ostmark, B., & Chang, L. J. (2012). The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chemico-Biological Interactions, 195(1), 52–60. https://doi.org/10.1016/j.cbi.2011.10.007.

    Article  CAS  PubMed  Google Scholar 

  209. Meital, L. T., Coward, A. S., Windsor, M. T., Bailey, T. G., Kuballa, A., & Russell, F. D. (2019). A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. Journal of Immunological Methods, 472, 75–78. https://doi.org/10.1016/j.jim.2019.04.005.

    Article  CAS  PubMed  Google Scholar 

  210. Di, G., Li, Y., Zhao, X., Wang, N., Fu, J., Li, M., Huang, M., You, W., Kong, X., & Ke, C. (2019). Differential proteomic profiles and characterizations between hyalinocytes and granulocytes in ivory shell Babylonia areolata. Fish & Shellfish Immunology, 92, 405–420. https://doi.org/10.1016/j.fsi.2019.06.036.

    Article  CAS  Google Scholar 

  211. Karim, M. R., & Wang, Y. F. (2019). Phenotypic identification of CD19(+)CD5(+)CD1d(+) regulatory B cells that produce interleukin 10 and transforming growth factor beta1 in human peripheral blood. Archives of Medical Science, 15(5), 1176–1183. https://doi.org/10.5114/aoms.2018.77772.

    Article  CAS  PubMed  Google Scholar 

  212. Yang, X., Zeng, Q., Goktas, E., Gopal, K., Al-Aswad, L., Blumberg, D. M., Cioffi, G. A., Liebmann, J. M., & Tezel, G. (2019). T-Lymphocyte subset distribution and activity in patients with glaucoma. Investigative Ophthalmology & Visual Science, 60(4), 877–888. https://doi.org/10.1167/iovs.18-26129.

    Article  CAS  Google Scholar 

  213. Emad, A., & Drouin, R. (2014). Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood. Prenatal Diagnosis, 34(9), 878–885. https://doi.org/10.1002/pd.4387.

    Article  PubMed  Google Scholar 

  214. Liu, W. H., Wang, X., You, N., Tao, K. S., Wang, T., Tang, L. J., & Dou, K. F. (2012). Efficient enrichment of hepatic cancer stem-like cells from a primary rat HCC model via a density gradient centrifugation-centered method. PLoS ONE, 7(4), e35720. https://doi.org/10.1371/journal.pone.0035720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Smith, L. M., Nesterova, A., Ryan, M. C., Duniho, S., Jonas, M., Anderson, M., Zabinski, R. F., Sutherland, M. K., Gerber, H. P., Van Orden, K. L., Moore, P. A., Ruben, S. M., & Carter, P. J. (2008). CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. British Journal of Cancer, 99(1), 100–109. https://doi.org/10.1038/sj.bjc.6604437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Singh, R., Setiady, Y. Y., Ponte, J., Kovtun, Y. V., Lai, K. C., Hong, E. E., Fishkin, N., Dong, L., Jones, G. E., Coccia, J. A., Lanieri, L., Veale, K., Costoplus, J. A., Skaletskaya, A., Gabriel, R., Salomon, P., Wu, R., Qiu, Q., Erickson, H. K., Lambert, J. M., Chari, R. V., & Widdison, W. C. (2016). A new triglycyl peptide linker for antibody-drug conjugates (ADCs) with improved targeted killing of cancer cells. Molecular Cancer Therapeutics, 15(6), 1311–1320. https://doi.org/10.1158/1535-7163.MCT-16-0021.

    Article  CAS  PubMed  Google Scholar 

  217. Toshiyama, R., Konno, M., Eguchi, H., Takemoto, H., Noda, T., Asai, A., Koseki, J., Haraguchi, N., Ueda, Y., Matsushita, K., Asukai, K., Ohashi, T., Iwagami, Y., Yamada, D., Sakai, D., Asaoka, T., Kudo, T., Kawamoto, K., Gotoh, K., Kobayashi, S., Satoh, T., Doki, Y., Nishiyama, N., Mori, M., & Ishii, H. (2019). Poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells. Oncogene, 38(2), 244–260. https://doi.org/10.1038/s41388-018-0406-x.

    Article  CAS  PubMed  Google Scholar 

  218. Jiang, Y., Li, X., Hou, J., Huang, Y., Wang, X., Jia, Y., Wang, Q., Xu, W., Zhang, J., & Zhang, Y. (2018). Synthesis and biological characterization of ubenimex-fluorouracil conjugates for anti-cancer therapy. European Journal of Medicinal Chemistry, 143, 334–347. https://doi.org/10.1016/j.ejmech.2017.11.074.

    Article  CAS  PubMed  Google Scholar 

  219. Guo, Q., Jing, F. J., Qu, H. J., Xu, W., Han, B., Xing, X. M., Ji, H. Y., & Jing, F. B. (2019). Ubenimex reverses MDR in gastric cancer Cells by activating Caspase-3-Mediated apoptosis and suppressing the expression of membrane transport proteins. BioMed Research International, 2019, 4390839. https://doi.org/10.1155/2019/4390839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jiang, Y., Li, X., Hou, J., Huang, Y., Jia, Y., Zou, M., Zhang, J., Wang, X., Xu, W., & Zhang, Y. (2016). Discovery of BC-01, a novel mutual prodrug (hybrid drug) of ubenimex and fluorouracil as anticancer agent. European Journal of Medicinal Chemistry, 121, 649–657. https://doi.org/10.1016/j.ejmech.2016.05.068.

    Article  CAS  PubMed  Google Scholar 

  221. Jiang, Y., Hou, J., Li, X., Huang, Y., Wang, X., Wu, J., Zhang, J., Xu, W., & Zhang, Y. (2016). Discovery of a novel chimeric ubenimex-gemcitabine with potent oral antitumor activity. Bioorganic & Medicinal Chemistry, 24(22), 5787–5795. https://doi.org/10.1016/j.bmc.2016.09.033.

    Article  CAS  Google Scholar 

  222. Martin-Padura, I., Marighetti, P., Agliano, A., Colombo, F., Larzabal, L., Redrado, M., Bleau, A. M., Prior, C., Bertolini, F., & Calvo, A. (2012). Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Laboratory Investigation, 92(7), 952–966. https://doi.org/10.1038/labinvest.2012.65.

    Article  CAS  PubMed  Google Scholar 

  223. Kim, B. H., Park, J. W., Kim, J. S., Lee, S. K., & Hong, E. K. (2019). Stem cell markers predict the response to sorafenib in patients with hepatocellular carcinoma. Gut Liver, 13(3), 342–348. https://doi.org/10.5009/gnl18345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yoshida, M., Yamashita, T., Okada, H., Oishi, N., Nio, K., Hayashi, T., Nomura, Y., Hayashi, T., Asahina, Y., Ohwada, M., Sunagozaka, H., Takatori, H., Colombo, F., Porretti, L., Honda, M., & Kaneko, S. (2017). Sorafenib suppresses extrahepatic metastasis de novo in hepatocellular carcinoma through inhibition of mesenchymal cancer stem cells characterized by the expression of CD90. Scientific Reports, 7(1), 11292. https://doi.org/10.1038/s41598-017-11848-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Badar, T., & Shah, N. N. (2020). Chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Current Treatment Options in Oncology, 21(2), 16. https://doi.org/10.1007/s11864-020-0706-6.

    Article  PubMed  Google Scholar 

  226. Jin, X., Cao, Y., Wang, L., Sun, R., Cheng, L., He, X., Xiao, X., Jiang, Y., Li, Q., Zhang, H., Lu, W., Lyu, C., Jiang, Y., Meng, J., & Zhao, M. (2019). HLA-matched and HLA-haploidentical allogeneic CD19-directed chimeric antigen receptor T-cell infusions are feasible in relapsed or refractory B-cell acute lymphoblastic leukemia before hematopoietic stem cell transplantation. Leukemia. https://doi.org/10.1038/s41375-019-0610-x.

  227. Huang, H., Wu, H. W., & Hu, Y. X. (2020). Current advances in chimeric antigen receptor T-cell therapy for refractory/relapsed multiple myeloma. Journal of Zhejiang University. Science. B, 21(1), 29–41. https://doi.org/10.1631/jzus.B1900351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lin, J. K., Muffly, L. S., Spinner, M. A., Barnes, J. I., Owens, D. K., & Goldhaber-Fiebert, J. D. (2019). Cost effectiveness of chimeric antigen receptor T-Cell therapy in multiply relapsed or refractory adult large B-Cell lymphoma. Journal of Clinical Oncology, 37(24), 2105–2119. https://doi.org/10.1200/JCO.18.02079.

    Article  CAS  PubMed  Google Scholar 

  229. Ahamadi-Fesharaki, R., Fateh, A., Vaziri, F., Solgi, G., Siadat, S. D., Mahboudi, F., & Rahimi-Jamnani, F. (2019). Single-chain variable fragment-based bispecific antibodies: hitting two targets with one sophisticated arrow. Molecular Therapy - Oncolytics, 14, 38–56. https://doi.org/10.1016/j.omto.2019.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Knodler, M., Korfer, J., Kunzmann, V., Trojan, J., Daum, S., Schenk, M., Kullmann, F., Schroll, S., Behringer, D., Stahl, M., Al-Batran, S. E., Hacker, U., Ibach, S., Lindhofer, H., & Lordick, F. (2018). Randomised phase II trial to investigate catumaxomab (anti-EpCAM x anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. British Journal of Cancer, 119(3), 296–302. https://doi.org/10.1038/s41416-018-0150-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kurbacher, C. M., Horn, O., Kurbacher, J. A., Herz, S., Kurbacher, A. T., Hildenbrand, R., & Bollmann, R. (2015). Outpatient intraperitoneal catumaxomab therapy for malignant ascites related to advanced gynecologic neoplasms. Oncologist, 20(11), 1333–1341. https://doi.org/10.1634/theoncologist.2015-0076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Borlak, J., Langer, F., Spanel, R., Schondorfer, G., & Dittrich, C. (2016). Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcgamma receptors. Oncotarget, 7(19), 28059–28074. https://doi.org/10.18632/oncotarget.8574.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Pinato, D. J., Guerra, N., Fessas, P., Murphy, R., Mineo, T., Mauri, F. A., Mukherjee, S. K., Thursz, M., Wong, C. N., Sharma, R., & Rimassa, L. (2020). Immune-based therapies for hepatocellular carcinoma. Oncogene, 39(18), 3620–3637. https://doi.org/10.1038/s41388-020-1249-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Turton, K. L., Meier-Stephenson, V., Badmalia, M. D., Coffin, C. S., & Patel, T. R. (2020). Host transcription factors in hepatitis B virus RNA synthesis. Viruses, 12(2). https://doi.org/10.3390/v12020160.

  235. Yip, T. C., Wong, G. L., Wong, V. W., Tse, Y. K., Liang, L. Y., Hui, V. W., Lee, H. W., Lui, G. C., & Chan, H. L. (2019). Reassessing the accuracy of PAGE-B-related scores to predict hepatocellular carcinoma development in patients with chronic hepatitis B. Journal of Hepatology. https://doi.org/10.1016/j.jhep.2019.12.005.

  236. Sartorius, K., Makarova, J., Sartorius, B., An, P., Winkler, C., Chuturgoon, A., & Kramvis, A. (2019). The regulatory role of MicroRNA in Hepatitis-B virus-associated hepatocellular carcinoma (HBV-HCC) pathogenesis. Cells, 8(12). https://doi.org/10.3390/cells8121504.

  237. Liu, Y. C., Lu, L. F., Li, C. J., Sun, N. K., Guo, J. Y., Huang, Y. H., Yeh, C. T., & Chao, C. C. (2019). Hepatitis B virus X protein induces RHAMM-dependent motility in hepatocellular carcinoma cells via PI3K-Akt-Oct-1 signaling. Molecular Cancer Research. https://doi.org/10.1158/1541-7786.MCR-19-0463.

  238. Jin, Y., Lee, W. Y., Toh, S. T., Tennakoon, C., Toh, H. C., Chow, P. K., Chung, A. Y., Chong, S. S., Ooi, L. L., Sung, W. K., & Lee, C. G. (2019). Comprehensive analysis of transcriptome profiles in hepatocellular carcinoma. Journal of Translational Medicine, 17(1), 273. https://doi.org/10.1186/s12967-019-2025-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Xu, Q. G., Yuan, S. X., Tao, Q. F., Yu, J., Cai, J., Yang, Y., Guo, X. G., Lin, K. Y., Ma, J. Z., Dai, D. S., Wang, Z. G., Gu, F. M., Zhao, L. H., Li, L. Q., Liu, J. F., Sun, S. H., Zang, Y. J., Liu, H., Yang, F., & Zhou, W. P. (2019). A novel HBx genotype serves as a preoperative predictor and fails to activate the JAK1/STATs pathway in hepatocellular carcinoma. Journal of Hepatology, 70(5), 904–917. https://doi.org/10.1016/j.jhep.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  240. Wei, J. Y., Lin, D. N., Wu, Z. B., Zhu, J. Y., Zhao, Z. X., Mei, Y. Y., Lin, C. S., Zhang, J., & Zhang, X. H. (2018). Safety and efficacy of DCV-based DAAs therapy for chronic HCV infection in China. Zhonghua Gan Zang Bing Za Zhi, 26(12), 933–939. https://doi.org/10.3760/cma.j.issn.1007-3418.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  241. Tsukamoto, H., Mishra, L., & Machida, K. (2014). Alcohol, TLR4-TGF-beta antagonism, and liver cancer. Hepatology International, 8(Suppl 2), 408–412. https://doi.org/10.1007/s12072-013-9489-1.

    Article  PubMed  Google Scholar 

  242. Levrero, M. (2006). Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene, 25(27), 3834–3847. https://doi.org/10.1038/sj.onc.1209562.

    Article  CAS  PubMed  Google Scholar 

  243. Arzumanyan, A., Friedman, T., Ng, I. O., Clayton, M. M., Lian, Z., & Feitelson, M. A. (2011). Does the hepatitis B antigen HBx promote the appearance of liver cancer stem cells? Cancer Research, 71(10), 3701–3708. https://doi.org/10.1158/0008-5472.CAN-10-3951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kwon, Y. C., Sasaki, R., Meyer, K., & Ray, R. (2017). Hepatitis C virus core protein modulates endoglin (CD105) signaling pathway for liver pathogenesis. Journal of Virology, 91(21). https://doi.org/10.1128/JVI.01235-17.

  245. Rozeik, M. S., Hammam, O. A., Ali, A. I., Magdy, M., Khalil, H., Anas, A., Abo El Hassan, A. A., Rahim, A. A., & El-Shabasy, A. I. (2017). Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma. Electronic Physician, 9(7), 4708–4717. https://doi.org/10.19082/4708.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Castelli, G., Pelosi, E., & Testa, U. (2017). Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel), 9(9). https://doi.org/10.3390/cancers9090127.

  247. Wang, S., Cai, L., Zhang, F., Shang, X., Xiao, R., & Zhou, H. (2020). Inhibition of EZH2 attenuates sorafenib resistance by targeting NOTCH1 activation-dependent liver cancer stem cells via NOTCH1-related MicroRNAs in Hepatocellular carcinoma. Translational Oncology, 13(3), 100741. https://doi.org/10.1016/j.tranon.2020.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Wang, L., Li, X., Zhang, W., Yang, Y., Meng, Q., Wang, C., Xin, X., Jiang, X., Song, S., Lu, Y., Pu, H., Gui, X., Li, T., Xu, J., Li, J., Jia, S., & Lu, D. (2020). miR24-2 promotes malignant progression of human liver cancer stem cells by enhancing tyrosine kinase src epigenetically. Molecular Therapy, 28(2), 572–586. https://doi.org/10.1016/j.ymthe.2019.10.015.

    Article  CAS  PubMed  Google Scholar 

  249. Wei, Z., Jia, J., Heng, G., Xu, H., Shan, J., Wang, G., Liu, C., Xia, J., Zhou, H., Wu, M., Yang, Z., Wang, M., Xiong, Z., Huang, H., Liu, L., & Qian, C. (2019). Sirtuin-1/Mitochondrial ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells. Hepatology, 70(4), 1197–1213. https://doi.org/10.1002/hep.30622.

    Article  CAS  PubMed  Google Scholar 

  250. Zheng, H., Pomyen, Y., Hernandez, M. O., Li, C., Livak, F., Tang, W., Dang, H., Greten, T. F., Davis, J. L., Zhao, Y., Mehta, M., Levin, Y., Shetty, J., Tran, B., Budhu, A., & Wang, X. W. (2018). Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology, 68(1), 127–140. https://doi.org/10.1002/hep.29778.

    Article  PubMed  Google Scholar 

  251. Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., Modak, M., Carotta, S., Haslinger, C., Kind, D., Peet, G. W., Zhong, G., Lu, S., Zhu, W., Mao, Y., Xiao, M., Bergmann, M., Hu, X., Kerkar, S. P., Vogt, A. B., Pflanz, S., Liu, K., Peng, J., Ren, X., & Zhang, Z. (2019). Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 179(4), 829–845 e820. https://doi.org/10.1016/j.cell.2019.10.003.

    Article  CAS  PubMed  Google Scholar 

  252. Liao, X., Song, L., Zhang, L., Wang, H., Tong, Q., Xu, J., Yang, G., Yang, S., & Zheng, H. (2018). LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway. Molecular and Cellular Endocrinology, 470, 160–167. https://doi.org/10.1016/j.mce.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author Lu Liu performed the initial literature search and prepared the Figures and Tables. Both authors contributed equally to the writing; JB wrote the final manuscript.

Corresponding author

Correspondence to Jürgen Borlak.

Ethics declarations

Conflict of Interest

The authors declare they have no financial interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Borlak, J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev and Rep 17, 1215–1238 (2021). https://doi.org/10.1007/s12015-020-10114-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10114-6

Keywords

Navigation