Skip to main content

Advertisement

Log in

Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, “metabostemness” denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naik, P. P., Birbrair, A., & Bhutia, S. K. (2019). Mitophagy-driven metabolic switch reprograms stem cell fate. Cellular and Molecular Life Sciences, 76(1), 27–43.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, M., Soga, T., & Pollard, P. J. (2013). Oncometabolites: linking altered metabolism with cancer. The Journal of Clinical Investigation, 123(9), 3652–3658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donohoe, D. R., & Bultman, S. J. (2012). Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. Journal of Cellular Physiology, 227(9), 3169–3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Avitabile, D., Magenta, A., Lauri, A., Gambini, E., & Spaltro, G.Cristina Vinci, M. (2016). Metaboloepigenetics: the emerging network in stem cell homeostasis regulation. Current Stem Cell Research & Therapy, 11(4), 352–369.

    Article  CAS  Google Scholar 

  5. Menendez, J. A., & Alarcón, T. (2014). Metabostemness: a new cancer hallmark. Frontiers in oncology, 4, 262.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Menendez, J. A., Corominas-Faja, B., Cuyàs, E., & Alarcón, T. (2014). Metabostemness: Metaboloepigenetic reprogramming of cancer stem-cell functions. Oncoscience, 1(12), 803.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Menendez, J. A. (2015). The metaboloepigenetic dimension of cancer stem cells: evaluating the market potential for new metabostemness-targeting oncology drugs. Current Pharmaceutical Design, 21(25), 3644–3653.

    Article  CAS  PubMed  Google Scholar 

  8. Menendez, J.A., & Joven, J. (2014). Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Advances in Experiemntal Medicine and Biology, 824, 117–140.

  9. Menendez, J. A., & Alarcón, T. (2016). Nuclear reprogramming of cancer stem cells: Corrupting the epigenetic code of cell identity with oncometabolites. Molecular & cellular oncology, 3(6), e1160854.

    Article  Google Scholar 

  10. Naik, P. P., Mukhopadhyay, S., Panda, P. K., Sinha, N., Das, C. K., Mishra, R., et al. (2018). Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD 44, ABCB 1 and ADAM 17 in oral squamous cell carcinoma. Cell proliferation, 51(1), e12411.

  11. Naik, P. P., Mukhopadhyay, S., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., Mahapatra, K. K., et al. (2020). Secretory clusterin promotes oral cancer cell survival via inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1 dependent pathway. Life Sciences, 264.

  12. Naik, P. P. (2020). Mitophagy and Reverse Warburg Effect: Metabolic Compartmentalization of Tumor Microenvironment. In Autophagy in tumor and tumor microenvironment, 117–140, Springer.

  13. Naik, P. P., Panda, P. K., & Bhutia, S. K. (2017). Oral cancer stem cells microenvironment. In Stem cell microenvironments and beyond, 207–233, Springer.

  14. Naik, P. P., Das, D. N., Panda, P. K., Mukhopadhyay, S., Sinha, N., Praharaj, P. P., et al. (2016). Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncology, 62, 122–135.

    Article  CAS  PubMed  Google Scholar 

  15. Naik, P. P., Praharaj, P. P., Bhol, C. S., Panigrahi, D. P., Mahapatra, K. K., Patra, S., et al. (2019). Mitochondrial Heterogeneity in Stem Cells. Advnces in Experiemntal Medecine and Biology, 1123, 179–194.

    CAS  Google Scholar 

  16. Menendez, J. A. (2015). Metabolic control of cancer cell stemness: Lessons from iPS cells. Cell Cycle, 14(24), 3801–3811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciavardelli, D., Rossi, C., Barcaroli, D., Volpe, S., Consalvo, A., Zucchelli, M., et al. (2014). Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death and Diseases, 5(7), e1336.

    Article  CAS  Google Scholar 

  18. Menendez, J. A., Joven, J., Cufí, S., Corominas-Faja, B., Oliveras-Ferraros, C., Cuyàs, E., et al. (2013). The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle, 12(8), 1166–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jang, Y. Y., & Sharkis, S. J. (2007). A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 110(8), 3056–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowie, M. B., McKnight, K. D., Kent, D. G., McCaffrey, L., Hoodless, P. A., & Eaves, C. J. (2006). Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. Journal of Clinical Investigation, 116(10), 2808–2816.

    Article  CAS  PubMed Central  Google Scholar 

  21. Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., Liu, Y., et al. (2008). TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 205(10), 2397–2408.

    Article  CAS  Google Scholar 

  22. Kobayashi, C. I., & Suda, T. (2012). Regulation of reactive oxygen species in stem cells and cancer stem cells. Journal of Cellular Physiology, 227(2), 421–430.

    Article  CAS  PubMed  Google Scholar 

  23. Emmink, B. L., Verheem, A., Van Houdt, W. J., Steller, E. J., Govaert, K. M., Pham, T. V., et al. (2013). The secretome of colon cancer stem cells contains drug-metabolizing enzymes. Journal of Proteomics, 91, 84–96.

    Article  CAS  PubMed  Google Scholar 

  24. Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., et al. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One, 9(1), e84941.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Palorini, R., Votta, G., Balestrieri, C., Monestiroli, A., Olivieri, S., Vento, R., et al. (2014). Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. Journal of Cellular Biochemistry, 115(2), 368–379.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, Y., Zhou, Y., Shingu, T., Feng, L., Chen, Z., Ogasawara, M., et al. (2011). Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. Jornal of Biological Chemistry, 286(37), 32843–32853.

    Article  CAS  Google Scholar 

  27. Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2017). Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 14(2), 113.

    Article  PubMed  Google Scholar 

  28. Sancho, P., Barneda, D., & Heeschen, C. (2016). Hallmarks of cancer stem cell metabolism. British Journal of Cancer, 114(12), 1305–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peiris-Pagès, M., Martinez-Outschoorn, U. E., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2016). Cancer stem cell metabolism. Breast Cancer Research, 18(1), 55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, P. P., Liao, J., Tang, Z. J., Wu, W. J., Yang, J., Zeng, Z. L., et al. (2014). Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death and Differentiation, 21(1), 124–135.

    Article  PubMed  Google Scholar 

  31. Tamada, M., Nagano, O., Tateyama, S., Ohmura, M., Yae, T., Ishimoto, T., et al. (2012). Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Research, 72(6), 1438–1448.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, H., Duan, Q., Zhang, Z., Li, H., Wu, H., Shen, Q., et al. (2017). Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. Journal of Cellular and Molecular Medicine, 21(9), 2055–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sowa, T., Menju, T., Chen-Yoshikawa, T. F., Takahashi, K., Nishikawa, S., Nakanishi, T., et al. (2017). Hypoxia-inducible factor 1 promotes chemoresistance of lung cancer by inducing carbonic anhydrase IX expression. Cancer Medicine, 6(1), 288–297.

    Article  CAS  PubMed  Google Scholar 

  34. Dong, C., Yuan, T., Wu, Y., Wang, Y., Fan, T. W., Miriyala, S., et al. (2013). Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell, 23(3), 316–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen, Y. A., Wang, C. Y., Hsieh, Y. T., Chen, Y. J., & Wei, Y. H. (2015). Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle, 14(1), 86–98.

    Article  PubMed  Google Scholar 

  36. Goidts, V., Bageritz, J., Puccio, L., Nakata, S., Zapatka, M., Barbus, S., et al. (2012). RNAi screening in glioma stem-like cells identifies PFKFB4 as a key molecule important for cancer cell survival. Oncogene, 31(27), 3235–3243.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, Q., Tu, J., Dou, C., Zhang, J., Yang, L., Liu, X., et al. (2017). HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Molecular Cancer, 16(1), 178.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, X., Chen, S., Tu, J., Cai, W., & Xu, Q. (2016). HSP90 inhibits apoptosis and promotes growth by regulating HIF-1α abundance in hepatocellular carcinoma. International Journal of Molecular Medicine, 37(3), 825–835.

    Article  CAS  PubMed  Google Scholar 

  39. Canal, F., & Perret, C. (2012). PKM2: a new player in the β-catenin game. Future Oncology, 8(4), 395–398.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, J., Kim, H. K., Han, Y. M., & Kim, J. (2008). Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. The International Journal of Biochemistry & Cell Biology, 40(5), 1043–1054.

    Article  CAS  Google Scholar 

  41. Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., et al. (2017). Corrigendum: Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature, 550(7674), 142.

    Article  CAS  PubMed  Google Scholar 

  42. Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8(9), 705–713.

    Article  CAS  PubMed  Google Scholar 

  43. Meijer, T. W., Kaanders, J. H., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical Cancer Research, 18(20), 5585–5594.

    Article  CAS  PubMed  Google Scholar 

  44. Singh, D., Arora, R., Kaur, P., Singh, B., Mannan, R., & Arora, S. (2017). Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer. Cell and Bioscience, 7, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, N. H., Cha, Y. H., Lee, J., Lee, S. H., Yang, J. H., Yun, J. S., et al. (2017). Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nature Communication, 8, 14374.

    Article  CAS  Google Scholar 

  46. Lee, S. Y., Jeong, E. K., Ju, M. K., Jeon, H. M., Kim, M. Y., Kim, C. H., et al. (2017). Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Molecular Cancer, 16(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Yoo, M. A., et al. (2015). Dlx-2 is implicated in TGF-β- and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. International Journal of Oncology, 46(4), 1768–1780.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, S. Y., Jeon, H. M., Ju, M. K., Jeong, E. K., Kim, C. H., Park, H. G., et al. (2016). Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget, 7(7), 7925–7939.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lu, J., Tan, M., & Cai, Q. (2015). The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters, 356, 156–164.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., et al. (2012). Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Research, 72(14), 3607–3617.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson, C. B. (2014). Wnt meets Warburg: another piece in the puzzle? The EMBO Journal, 33(13), 1420–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pate, K. T., Stringari, C., Sprowl-Tanio, S., Wang, K., TeSlaa, T., Hoverter, N. P., et al. (2014). Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. The EMBO Journal, 33(13), 1454–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sherwood, V. (2015). WNT signaling: an emerging mediator of cancer cell metabolism? Molecular Cell Biology, 35(1), 2–10.

    Article  Google Scholar 

  54. Kondaveeti, Y., Guttilla, R., White, I. K., & B. A. (2015). Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Letters, 364(1), 44–58.

    Article  CAS  PubMed  Google Scholar 

  55. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., et al. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, W., & Semenza, G. L. (2011). Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget, 2(7), 551–556.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Demaria, M., Misale, S., Giorgi, C., Miano, V., Camporeale, A., Campisi, J., et al. (2012). STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death and Differentiation, 19(8), 1390–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamabe, A., Konno, M., Tanuma, N., Shima, H., Tsunekuni, K., Kawamoto, K., et al. (2014). Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15526–15531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, Q., Li, Y., Xu, J., Wang, S., Xu, Y., Li, X., et al. (2017). Aldolase B Overexpression is Associated with Poor Prognosis and Promotes Tumor Progression by Epithelial-Mesenchymal Transition in Colorectal Adenocarcinoma. Cellular Physiology and Biochemistry, 42(1), 397–406.

    Article  CAS  PubMed  Google Scholar 

  60. Ye, F., Chen, Y., Xia, L., Lian, J., & Yang, S. (2018). Aldolase A overexpression is associated with poor prognosis and promotes tumor progression by the epithelial-mesenchymal transition in colon cancer. Biochemical and Biophysical Research Communications, 497(2), 639–645.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang, F., Ma, S., Xue, Y., Hou, J., & Zhang, Y. (2016). LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochemical and Biophysical Research Communications, 469(4), 985–992.

    Article  CAS  PubMed  Google Scholar 

  62. Janiszewska, M., Suvà, M. L., Riggi, N., Houtkooper, R. H., Auwerx, J., Clément-Schatlo, V., et al. (2012). Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & Development, 26(17), 1926–1944.

    Article  CAS  Google Scholar 

  63. Lagadinou, E. D., Sach, A., Callahan, K., Rossi, R. M., Neering, S. J., Minhajuddin, M., et al. (2013). BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell, 12(3), 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sancho, P., Burgos-Ramos, E., Tavera, A., Bou Kheir, T., Jagust, P., Schoenhals, M., et al. (2015). MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metabolism, 22(4), 590–605.

    Article  CAS  PubMed  Google Scholar 

  65. Viale, A., Pettazzoni, P., Lyssiotis, C. A., Ying, H., Sánchez, N., Marchesini, M., et al. (2014). Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514(7524), 628–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pastò, A., Bellio, C., Pilotto, G., Ciminale, V., Silic-Benussi, M., Guzzo, G., et al. (2014). Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget, 5(12), 4305–4319.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sato, M., Kawana, K., Adachi, K., Fujimoto, A., Yoshida, M., Nakamura, H., et al. (2016). Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle. Oncotarget, 7(22), 33297–33305.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gao, C., Shen, Y., Jin, F., Miao, Y., & Qiu, X. (2016). Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. PLoS One, 11(5), e0154576.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee, K. M., Giltnane, J. M., Balko, J. M., Schwarz, L. J., Guerrero-Zotano, A. L., Hutchinson, K. E., et al. (2017). MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metabolism, 26(4), 633–647.e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. LeBleu, V. S., O'Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C., et al. (2014). PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003.

  71. Jiang, W. G., Douglas-Jones, A., & Mansel, R. E. (2003). Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. International Journal of Cancer, 106(5), 752–757.

    Article  CAS  PubMed  Google Scholar 

  72. De Luca, A., Fiorillo, M., Peiris-Pagès, M., Ozsvari, B., Smith, D. L., Sanchez-Alvarez, R., et al. (2015). Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget, 6(17), 14777–14795.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lamb, R., Harrison, H., Hulit, J., Smith, D. L., Lisanti, M. P., & Sotgia, F. (2014). Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029–11037.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vlashi, E., Lagadec, C., Vergnes, L., Reue, K., Frohnen, P., Chan, M., et al. (2014). Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Research and Treatment, 146(3), 525–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Farnie, G., Sotgia, F., & Lisanti, M. P. (2015). High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget, 6(31), 30472–30486.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., et al. (2013). PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 23(3), 287–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, C. L., Uthaya Kumar, D. B., Punj, V., Xu, J., Sher, L., Tahara, S. M., et al. (2016). NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism. Cell Metabolism, 23(1), 206–219.

    Article  CAS  PubMed  Google Scholar 

  78. El Hout, M., Cosialls, E., Mehrpour, M., & Hamaï, A. (2020). Crosstalk between autophagy and metabolic regulation of cancer stem cells. Molecular Cancer, 19(1), 27.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bonuccelli, G., Peiris-Pages, M., Ozsvari, B., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2017). Targeting cancer stem cell propagation with palbociclib, a CDK4/6 inhibitor: Telomerase drives tumor cell heterogeneity. Oncotarget, 8(6), 9868–9884.

    Article  PubMed  Google Scholar 

  80. Snyder, V., Reed-Newman, T. C., Arnold, L., Thomas, S. M., & Anant, S. (2018). Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Frontiers in Oncology, 8, 203.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yajima, T., Ochiai, H., Uchiyama, T., Takano, N., Shibahara, T., & Azuma, T. (2009). Resistance to cytotoxic chemotherapy-induced apoptosis in side population cells of human oral squamous cell carcinoma cell line Ho-1-N-1. International Journal of Oncology, 35(2), 273–280.

    CAS  PubMed  Google Scholar 

  82. Zhang, G., Frederick, D. T., Wu, L., Wei, Z., Krepler, C., Srinivasan, S., et al. (2016). Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. Journal of Clinical Investigation, 126(5), 1834–1856.

    Article  Google Scholar 

  83. Corominas-Faja, B., Cuyàs, E., Gumuzio, J., Bosch-Barrera, J., Leis, O., Martin, Á., & G., et al. (2014). Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget, 5(18), 8306–8316.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Corominas-Faja, B., Vellon, L., Cuyàs, E., Buxó, M., Martin-Castillo, B., Serra, D., et al. (2017). Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histology & Histopathology, 32(7), 687–698.

    CAS  Google Scholar 

  85. González-Bártulos, M., Aceves-Luquero, C., Qualai, J., Cussó, O., Martínez, M. A., Fernández de Mattos, S., et al. (2015). Pro-Oxidant Activity of Amine-Pyridine-Based Iron Complexes Efficiently Kills Cancer and Cancer Stem-Like Cells. PLoS One, 10(9), e0137800.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yi, M., Li, J., Chen, S., Cai, J., Ban, Y., Peng, Q., et al. (2018). Emerging role of lipid metabolism alterations in Cancer stem cells. Journal of Experimental & Clinical Cancer Research, 37(1), 118.

    Article  Google Scholar 

  87. Pandey, P. R., Xing, F., Sharma, S., Watabe, M., Pai, S. K., Iiizumi-Gairani, M., et al. (2013). Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene, 32(42), 5111–5122.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, T., Fahrmann, J. F., Lee, H., Li, Y. J., Tripathi, S. C., Yue, C., et al. (2018). JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metabolism, 27(1), 136–150.

  89. Gonzalez-Guerrico, A. M., Espinoza, I., Schroeder, B., Park, C. H., Kvp, C. M., Khurana, A., et al. (2016). Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer. Oncotarget, 7(44), 71151–71168.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang, L., Zhang, F., Wang, X., Tsai, Y., Chuang, K. H., Keng, P. C., et al. (2016). A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. Oncotarget, 7(34), 55543–55554.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peixoto, J., & Lima, J. (2018). Metabolic traits of cancer stem cells. Disease Models & Mechanisms, 11(8), 033464.

    Article  Google Scholar 

  93. Cuyàs, E., Verdura, S., Fernández-Arroyo, S., Bosch-Barrera, J., Martin-Castillo, B., Joven, J., et al. (2017). Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity. Oncotarget, 8(59), 99223–99236.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Goding, C. R., Pei, D., & Lu, X. (2014). Cancer: pathological nuclear reprogramming? Nature Reviews Cancer, 14(8), 568–573.

    Article  CAS  PubMed  Google Scholar 

  95. Saha, S. K., Parachoniak, C. A., & Bardeesy, N. (2014). IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle., 13(20), 3176–3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. Bioessays, 31(5), 546–560.

    Article  CAS  PubMed  Google Scholar 

  97. Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell and Developmental Biology, 20(7), 869–876.

    Article  CAS  PubMed  Google Scholar 

  98. Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4), 508–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, S. (2012). The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology? Bioessays, 34(2), 149–157.

    Article  CAS  PubMed  Google Scholar 

  100. Lu, C., & Thompson, C. B. (2012). Metabolic regulation of epigenetics. Cell Metabolism, 16(1), 9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Menendez, J. A., Alarcón, T., & Joven, J. (2014). Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites. Cell Cycle, 13(5), 699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nowicki, S., & Gottlieb, E. (2015). Oncometabolites: tailoring our genes. The FEBS Journal, 282(15), 2796–2805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nam, H., Campodonico, M., Bordbar, A., Hyduke, D. R., Kim, S., Zielinski, D. C., et al. (2014). A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Computational Biology, 10(9), e1003837.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Corominas-Faja, B., Cufí, S., Oliveras-Ferraros, C., Cuyàs, E., López-Bonet, E., Lupu, R., et al. (2013). Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle, 12(18), 3109–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Terunuma, A., Putluri, N., Mishra, P., Mathé, E. A., Dorsey, T. H., Yi, M., et al. (2014). MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. Journal of Clinincal Investigation, 124(1), 398–412.

    Article  CAS  Google Scholar 

  106. Lee, S. Y., Ju, M. K., Jeon, H. M., Lee, Y. J., Kim, C. H., Park, H. G., et al. (2018). Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. Oxidative Medicine and Cellular Longevity, 23, 1027453.

    Google Scholar 

  107. Røsland, G. V., Dyrstad, S. E., Tusubira, D., Helwa, R., Tan, T. Z., Lotsberg, M. L., et al. (2019). Epithelial to mesenchymal transition (EMT) is associated with attenuation of succinate dehydrogenase (SDH) in breast cancer through reduced expression of SDHC. Cancer Metabolism, 7, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ahmad, A., Aboukameel, A., Kong, D., Wang, Z., Sethi, S., Chen, W., et al. (2011). Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Research, 71(9), 3400–3409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goel, A., Mathupala, S. P., & Pedersen, P. L. (2003). Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. Journal of Biological Chemistry, 278(17), 15333–15340.

    Article  CAS  Google Scholar 

  110. Liu, X., Wang, X., Zhang, J., Lam, E. K., Shin, V. Y., Cheng, A. S., et al. (2010). Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene, 29(3), 442–450.

    Article  CAS  PubMed  Google Scholar 

  111. Wolf, A., Agnihotri, S., Munoz, D., & Guha, A. (2011). Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiology of Disease, 44(1), 84–91.

    Article  CAS  PubMed  Google Scholar 

  112. Chen, M., Zhang, J., Li, N., Qian, Z., Zhu, M., Li, Q., et al. (2011). Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer. PLoS One, 6(10), e25564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A., Leal, L., et al. (2014). A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communication, 5, 3608.

    Article  Google Scholar 

  114. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., et al. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460(7259), 1132–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Cañamero, M., et al. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., et al. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Utikal, J., Polo, J. M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R. M., et al. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259), 1145–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sarig, R., Rivlin, N., Brosh, R., Bornstein, C., Kamer, I., Ezra, O., et al. (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. Journal of Experimental Medicine, 207(10), 2127–2140.

    Article  CAS  Google Scholar 

  120. Tapia, N., & Schöler, H. R. (2010). p53 connects tumorigenesis and reprogramming to pluripotency. Journal of Experimental Medicine, 207(10), 2045–2048.

    Article  CAS  Google Scholar 

  121. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126(1), 107–120.

    Article  CAS  PubMed  Google Scholar 

  122. Kawauchi, K., Araki, K., Tobiume, K., & Tanaka, N. (2008). p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature Cell Biology, 10(5), 611–618.

    Article  CAS  PubMed  Google Scholar 

  123. Maddocks, O. D., & Vousden, K. H. (2011). Metabolic regulation by p53. Berl Journal of Molecular Medicine, 89(3), 237–245.

    Article  CAS  PubMed  Google Scholar 

  124. Sen, N., Satija, Y. K., & Das, S. (2011). PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Molecular Cell, 44(4), 621–634.

    Article  CAS  PubMed  Google Scholar 

  125. Sen, N., Satija, Y. K., & Das, S. (2012). p53 and metabolism: old player in a new game. Transcription, 3(3), 119–123.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Berkers, C. R., Maddocks, O. D., Cheung, E. C., Mor, I., & Vousden, K. H. (2013). Metabolic regulation by p53 family members. Cell Metabolism, 18(5), 617–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hitchler, M. J., & Domann, F. E. (2009). Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radical Biology and Medicine, 47(2), 115–127.

    Article  CAS  PubMed  Google Scholar 

  128. Sauve, A. A., Wolberger, C., Schramm, V. L., & Boeke, J. D. (2006). The biochemistry of sirtuins. Annual Review of Biochemistry, 75, 435–465.

    Article  CAS  PubMed  Google Scholar 

  129. Alemasova, E. E., & Lavrik, O. I. (2019). Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Research, 47(8), 3811–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Belenky, P., Bogan, K. L., & Brenner, C. (2007). NAD+ metabolism in health and disease. Trends in Biochemical Sciences, 32(1), 12–19.

    Article  CAS  PubMed  Google Scholar 

  131. Quénet, D., El Ramy, R., Schreiber, V., & Dantzer, F. (2009). The role of poly(ADP-ribosyl)ation in epigenetic events. The International Journal of Biochemistry & Cell Biology, 41(1), 60–65.

    Article  Google Scholar 

  132. Li, X., & Kazgan, N. (2011). Mammalian sirtuins and energy metabolism. International Journal of Biological Sciences, 7(5), 575–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Teperino, R., Schoonjans, K., & Auwerx, J. (2010). Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metabolism, 12(4), 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Huang, J., Sengupta, R., Espejo, A. B., Lee, M. G., Dorsey, J. A., Richter, M., et al. (2007). p53 is regulated by the lysine demethylase LSD1. Nature, 449(7158), 105–108.

    Article  CAS  PubMed  Google Scholar 

  135. Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell, 23(4), 607–618.

    Article  CAS  PubMed  Google Scholar 

  136. Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930), 1076–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968), 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325(5942), 834–840.

    Article  CAS  PubMed  Google Scholar 

  139. Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10(1), 12–31.

    Article  CAS  PubMed  Google Scholar 

  140. Ward, P., S., Patel, J., Wise, D., R., Abdel-Wahab, O., Bennett, B.D., Coller, H., A., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 17(3), 225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S. H., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chowdhury, R., Yeoh, K. K., Tian, Y. M., Hillringhaus, L., Bagg, E. A., Rose, N. R., et al. (2011). The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Report, 12(5), 463–469.

    Article  CAS  Google Scholar 

  143. Frezza, C., Pollard, P. J., & Gottlieb, E. (2011). Inborn and acquired metabolic defects in cancer. Journal of Molecular Medicine, 89(3), 213–220.

    Article  CAS  PubMed  Google Scholar 

  144. Yang, M., Soga, T., Pollard, P. J., & Adam, J. (2012). The emerging role of fumarate as an oncometabolite. Frontiers in Oncology, 2, 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cairns, R. A., & Mak, T. W. (2013). Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discovery, 3(7), 730–741.

    Article  CAS  PubMed  Google Scholar 

  146. Krell, D., Mulholland, P., Frampton, A. E., Krell, J., Stebbing, J., & Bardella, C. (2013). IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncology, 9(12), 1923–1935.

    Article  CAS  PubMed  Google Scholar 

  147. Sullivan, L. B., Martinez-Garcia, E., Nguyen, H., Mullen, A. R., Dufour, E., Sudarshan, S., et al. (2013). The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Molecular Cell, 51(2), 236–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Adam, J., Yang, M., Soga, T., & Pollard, P. J. (2014). Rare insights into cancer biology. Oncogene, 33(20), 2547–2556.

    Article  CAS  PubMed  Google Scholar 

  149. Borger, D. R., Goyal, L., Yau, T., Poon, R. T., Ancukiewicz, M., Deshpande, V., et al. (2014). Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Cliical Cancer Research, 20(7), 1884–1890.

    Article  CAS  Google Scholar 

  150. Gaude, E., & Frezza, C. (2014). Defects in mitochondrial metabolism and cancer. Cancer Metabolism, 2, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Saha, S. K., Parachoniak, C. A., Ghanta, K. S., Fitamant, J., Ross, K. N., Najem, M. S., et al. (2014). Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature, 513(7516), 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Menendez, J. A., Corominas-Faja, B., Cuyàs, E., García, M. G., Fernández-Arroyo, S., Fernández, A. F., et al. (2016). Oncometabolic Nuclear Reprogramming of Cancer Stemness. Stem Cell Reports, 6(3), 273–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry, 283(16), 10892–10903.

    Article  CAS  Google Scholar 

  155. Vazquez-Martin, A., Van den Haute, C., Cufí, S., Corominas-Faja, B., Cuyàs, E., Lopez-Bonet, E., et al. (2016). Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging (Albany NY), 8(7), 1330.

    Article  CAS  Google Scholar 

  156. Vazquez-Martin, A., Cufí, S., Corominas-Faja, B., Oliveras-Ferraros, C., Vellon, L., & Menendez, J. A. (2012). Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging (Albany NY), 4(6), 393.

    Article  CAS  Google Scholar 

  157. Lee, Y. J., Jeong, S.-Y., Karbowski, M., Smith, C. L., & Youle, R. J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Molecular Biology of the Cell, 15(11), 5001–5011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Son, M. J., Kwon, Y., Son, M. Y., Seol, B., Choi, H. S., Ryu, S. W., et al. (2015). Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death and Differiation, 22(12), 1957–1969.

    Article  CAS  Google Scholar 

  160. Zhou, J., Li, G., Zheng, Y., Shen, H. M., Hu, X., Ming, Q. L., et al. (2015). A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy, 11(8), 1259–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chang, C. M., Lan, K. L., Huang, W. S., Lee, Y. J., Lee, T. W., Chang, C. H., et al. (2017). 188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. International Journal of Molecular Sciences, 18(5), 903.

  162. Chen, Y. Y., Wang, W. H., Che, L., Lan, Y., Zhang, L. Y., Zhan, D. L., et al. (2020). BNIP3L-Dependent Mitophagy Promotes HBx-Induced Cancer Stemness of Hepatocellular Carcinoma Cells via Glycolysis Metabolism Reprogramming. Cancers (Basel), 12(3), 655.

  163. Alcalá, S., Sancho, P., Martinelli, P., Navarro, D., Pedrero, C., Martín-Hijano, L., et al. (2020). ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nature Communication, 11(1), 2682.

    Article  Google Scholar 

  164. Wang, L., Zhang, T., Wang, L., Cai, Y., Zhong, X., He, X., et al. (2017). Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. The EMBO Journal, 36(10), 1330–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., et al. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., et al. (2001). hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107(2), 149–159.

  167. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  168. Aguilar, E., Marin de Mas, I., Zodda, E., Marin, S., Morrish, F., Selivanov, V., et al. (2016). Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program. Stem Cells, 34(5), 1163–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jang, S. Y., Kang, H. T., & Hwang, E. S. (2012). Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. Journal of Biological Chemistry, 287(23), 19304–19314.

    Article  CAS  Google Scholar 

  170. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shackelford, D. B., Vasquez, D. S., Corbeil, J., Wu, S., Leblanc, M., Wu, C. L., et al. (2009). mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11137–11142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, W. J., & Huang, R. S. (2018). Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers. Journal of Nutritional Biochemistry, 53, 28–38.

    Article  CAS  Google Scholar 

  173. Zgheib, R., Battaglia-Hsu, S. F., Hergalant, S., Quéré, M., Alberto, J. M., Chéry, C., et al. (2019). Folate can promote the methionine-dependent reprogramming of glioblastoma cells towards pluripotency. Cell Death and Diseases, 10(8), 596.

    Article  Google Scholar 

Download references

Acknowledgments

We apologize to the authors for any fundamental studies that were omitted due to space limitations. Research support was partly provided by the Department of Biotechnology [BT/PR23304/MED/30/1823/2017], Ministry of Science and Technology, Government of India.

Availability of data and material

Not Applicable

Funding

Research support was provided by the Department of Biotechnology [BT/PR23304/MED/30/1823/2017], Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

PPN, PPP, CSB and SKB conceived the review. PPN, SP, RP, PPP CSB and SKB wrote the review, centralized and integrated comments from co-authors, and prepared the figures and tables. SP, MN, DG, SKP and SKB corrected the manuscript and provided valuable input to obtain a consensus view.

Corresponding author

Correspondence to Sujit Kumar Bhutia.

Ethics declarations

Competing interests

The authors disclose no conflict of interest.

Ethics approval and consent to participate

Not Applicable

Consent for publication

All Authors give consent to publish the Work

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, P.P., Panigrahi, S., Parida, R. et al. Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells . Stem Cell Rev and Rep 18, 198–213 (2022). https://doi.org/10.1007/s12015-021-10216-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10216-9

Keywords

Navigation