Skip to main content
Log in

Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named “Kaleido” that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database (http://www.flycircuit.tw/modules.php?name=kaleido). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Automatic hue angle assignment based on the distance of neurons.
Fig. 2: Visualize the Drosophila connectome with the optimal color assignment, in comparison with random color assignment.
Fig. 3: Patterns revealing various biological meanings hidden behind the images emerge with the differential color-assigning mode.
Fig. 4: Quantitative analysis of Kaleido
Fig. 5: User Interface of Kaleido.

Similar content being viewed by others

References

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251.

    Article  PubMed  CAS  Google Scholar 

  • Binder, K., & Heermann, D. (2010). Monte Carlo simulation in statistical physics: An introduction (5th ed.). New York: Springer.

    Book  Google Scholar 

  • Chiang, A. S., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21(1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Engel, K., Kraus, M., & Ertl, T. (2001). High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware (HWWS '01), Hanspeter Pfister (Ed.). ACM, New York, 9–16.

  • Finger, S. (2001). Origins of neuroscience : a history of explorations into brain function. New York: Oxford University Press.

  • Goldberg, I. G., et al. (2005). The open microscopy environment (OME) data model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biology, 6(5), R47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haehn, D., et al. (2017). Scalable interactive visualization for Connectomics. Informatics, 4(3), 29. https://doi.org/10.3390/informatics4030029.

    Article  Google Scholar 

  • Hampel, S., et al. (2011). Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nature Methods, 8(3), 253–259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hwu, Y., & Margaritondo, G. (2013). Phase contrast: the frontier of x-ray and electron imaging PREFACE. Journal of Physics D-Applied Physics, 46(49).

  • Landhuis, E. (2017). Neuroscience: Big brain, big data. Nature, 541(7638), 559–561.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T., & Luo, L. (2001). Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences, 24(5), 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Livet, J., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Markram, H., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456–492.

    Article  PubMed  CAS  Google Scholar 

  • Milyaev, N., et al. (2012). The virtual fly brain browser and query interface. Bioinformatics, 28, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng, H., et al. (2015). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pettersen, E. F., et al. (2004). UCSF chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Preucil, F. (1953). Color hue and ink transfer - their relation to perfect reproduction. TAGA Proceedings, pp. 102‑110.

  • Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7–8), 518–529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih, C. T., et al. (2015). Connectomics-based analysis of information flow in the Drosophila brain. Current Biology, 25(10), 1249–1258.

    Article  PubMed  CAS  Google Scholar 

  • Sigal, Y. M., Speer, C. M., Babcock, H. P., & Zhuang, X. W. (2015). Mapping synaptic input fields of neurons with super-resolution imaging. Cell, 163(2), 493–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Small, A., & Stahlheber, S. (2014). Fluorophore localization algorithms for super-resolution microscopy (vol 11, pg 267, 2014). Nature Methods, 11(9), 971–971.

    Article  CAS  Google Scholar 

  • Takemura, S. Y., et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500, 175–181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takemura, S. Y., et al. (2017). A connectome of a learning and memory center in the adult Drosophila brain. eLife, 6, e26975.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Chao-Chun Chuang, Yen-Jen Lin and Chun-Yen Lin for their assistance in the interface design and software integration. We are grateful to Hsiu-Ming Chang for editorial suggestions. This work was supported by Ministry of Science and Technology grants 105-2112-M-029-002 and 105-2633-B-007-001, and by the Aim for the Top University Project of the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan-Yow Chen, Chi-Tin Shih or Ann-Shyn Chiang.

Ethics declarations

Conflict of Interest

All the authors declare no conflicts of interest.

Electronic supplementary material

Figure S1

Benchmark of Kaleido. A-C: Computing resources used versus the number of neurons processed. A: Execution time. B: Peak memory. C: File size of output file. (PPTX 46 kb)

Video S1

A 360-degree rotating movie showing the volume rendering result of random 10,000 neurons in the FlyCircuit with Kaleido visualization. (MP4 18591 kb)

Video S2

An orthoslice movie showing the section view of random 10,000 neurons in the FlyCircuit with Kaleido visualization. (MP4 25583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Chen, NY., He, GW. et al. Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images. Neuroinform 16, 207–215 (2018). https://doi.org/10.1007/s12021-018-9363-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9363-3

Keywords

Navigation