Skip to main content

Advertisement

Log in

PDEF and PDEF-induced proteins as candidate tumor antigens for T cell and antibody-mediated immunotherapy of breast cancer

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Novel breast tumor antigens are needed to develop T cell and antibody-based vaccine immunotherapy approach against breast cancer. To this purpose, we have previously shown that PDEF is frequently over expressed in human breast tumors and exhibits highly restricted expression in normal human tissues that is primarily limited to normal prostate. Moreover, PDEF expression correlates with poor overall survival for breast cancer patients. Additionally, Pse (prostate-specific Ets, mouse homologue of PDEF) is immunogenic in female mice and PDEF sequence contains HLA-A2 binding potentially immunogenic peptides. Together, these observations support PDEF as a novel candidate breast tumor antigen. Further, we have identified certain PDEF-induced proteins including CEACAM6, B7-H4, and S100A7 as additional candidate breast tumor antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. L Peng and AK Sood, unpublished data.

References

  1. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.

    Article  PubMed  CAS  Google Scholar 

  2. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  PubMed  CAS  Google Scholar 

  4. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:18538–43.

    Article  PubMed  CAS  Google Scholar 

  5. Oldford SA, Robb JD, Codner D, Gadag V, Watson PH, Drover S. Tumor cell expression of HLA-DM associates with a Th1 profile and predicts improved survival in breast carcinoma patients. Int Immunol. 2006;18:1591–602.

    Article  PubMed  CAS  Google Scholar 

  6. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A. 2002;99:16168–73.

    Article  PubMed  CAS  Google Scholar 

  7. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23:2346–57.

    Article  PubMed  CAS  Google Scholar 

  8. Amin A, Benavides LC, Holmes JP, Gates JD, Carmichael MG, Hueman MT, et al. Assessment of immunologic response and recurrence patterns among patients with clinical recurrence after vaccination with a preventive HER2/neu peptide vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer Immunol Immunother. 2008;57:1817–25.

    Article  PubMed  CAS  Google Scholar 

  9. Ai WZ, Tibshirani R, Taidi B, Czerwinski D, Levy R. Anti-idiotype antibody response after vaccination correlates with better overall survival in follicular lymphoma. Blood. 2009;113:5743–6.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou G, Levitsky HI. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol. 2007;178:2155–62.

    PubMed  CAS  Google Scholar 

  11. Bui JD, Uppaluri R, Hsieh CS, Schreiber RD. Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res. 2006;66:7301–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2, 3-dioxygenase. J Clin Invest. 2007;117:2570–82.

    Article  PubMed  CAS  Google Scholar 

  13. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66:1123–31.

    Article  PubMed  CAS  Google Scholar 

  14. Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment. J Immunother (1997). 2006;29:233–40.

    Google Scholar 

  15. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.

    Article  PubMed  CAS  Google Scholar 

  16. Collins-Burow Bridgette, Santos Edgardo S. Rituximab and its role as maintenance therapy in non-Hodgkin lymphoma. Exp Rev Anticancer Therapy. 2007;7:257–73.

    Article  CAS  Google Scholar 

  17. Mendelsohn J, Baselga J. Epidermal growth factor receptor targeting in cancer. Semin Oncol. 2006;33:369–85.

    Article  PubMed  CAS  Google Scholar 

  18. Lien S, Lowman HB. Therapeutic anti-VEGF antibodies. Handb Exp Pharmacol. 2008;181:131–50.

    Article  PubMed  CAS  Google Scholar 

  19. Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother. 2008;57:1511–21.

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Liu D, Chen D, Kharbanda S, Kufe D. Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene. 2003;22:6107–10.

    Article  PubMed  CAS  Google Scholar 

  21. Khodarev NN, Pitroda SP, Beckett MA, MacDermed DM, Huang L, Kufe DW, et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res. 2009;69:2833–7.

    Article  PubMed  CAS  Google Scholar 

  22. Türeci O, Sahin U, Pfreundschuh M. Serological analysis of human tumor antigens: molecular definition and implications. Mol Med Today. 1997;3:342–9.

    Article  PubMed  Google Scholar 

  23. Slingluff CL Jr, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol. 1994;6:733–40.

    Article  PubMed  CAS  Google Scholar 

  24. Jäger D, Stockert E, Güre AO, Scanlan MJ, Karbach J, Jäger E, et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 2001;61:2055–61.

    PubMed  Google Scholar 

  25. Kao H, Marto JA, Hoffmann TK, Shabanowitz J, Finkelstein SD, Whiteside TL, et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J Exp Med. 2001;194:1313–23.

    Article  PubMed  CAS  Google Scholar 

  26. van Rossum AG, van Bragt MP, Schuuring-Scholtes E, van der Ploeg JC, van Krieken JH, Kluin PM, et al. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors: studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice. BMC Cancer. 2006;6:58.

    Article  PubMed  CAS  Google Scholar 

  27. Andersen MH, Svane IM, Becker JC, Straten PT. The universal character of the tumor-associated antigen survivin. Clin Cancer Res. 2007;13:5991–4.

    Article  PubMed  CAS  Google Scholar 

  28. Chakravarty PK, Fuji H, Abu-Hadid MM, Hsu SC, Sood AK. Tumorigenicity of interleukin-2 (IL-2)-cDNA-transfected L1210 lymphoma and its in vivo variants is modulated by changes in IL-2 expression; potential therapeutic implications. Cancer Immunol Immunother. 1992;35:347–54.

    Article  PubMed  CAS  Google Scholar 

  29. Hsu SC, Glaves D, Sood AK. Interleukin-2 secretion by KHT sarcoma cells leads to loss of their vaccine potential. Cancer Immunol Immunother. 1997;44:117–24.

    Article  PubMed  CAS  Google Scholar 

  30. Oettgen P, Finger E, Sun Z, Akbarali Y, Thamrongsak U, Boltax J, et al. PDEF, a novel prostate epithelium-specific Ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem. 2000;275:1216–25.

    Article  PubMed  CAS  Google Scholar 

  31. Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci. 1998;23:213–6.

    Article  PubMed  CAS  Google Scholar 

  32. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.

    Article  PubMed  CAS  Google Scholar 

  33. Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ Res. 2006;99:1159–66.

    Article  PubMed  CAS  Google Scholar 

  34. Kobberup S, Nyeng P, Juhl K, Hutton J, Jensen J. ETS-family genes in pancreatic development. Dev Dyn. 2007;236:3100–10.

    Article  PubMed  CAS  Google Scholar 

  35. Gutierrez-Hartmann A, Duval DL, Bradford AP. ETS transcription factors in endocrine systems. Trends Endocrinol Metab. 2007;18:150–8.

    Article  PubMed  CAS  Google Scholar 

  36. Dittmer J, Nordheim A. Ets transcription factors and human disease. Biochem Biophys Acta. 1998;1377:F1–11.

    PubMed  CAS  Google Scholar 

  37. Gilliland DG. The diverse role of the ETS family of transcription factors in cancer. Clin Cancer Res. 2001;7:451–3.

    PubMed  CAS  Google Scholar 

  38. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595–9.

    Article  PubMed  CAS  Google Scholar 

  39. Li R, Pei H, Watson DK. Regulation of Ets function by protein–protein interactions. Oncogene. 2000;19:6514–23.

    Article  PubMed  CAS  Google Scholar 

  40. Verger A, Duterque-Coquillaud M. When Ets transcription factors meet their partners. Bioessays. 2002;24:362–70.

    Article  PubMed  CAS  Google Scholar 

  41. Hollenhorst PC, Jones DA, Graves BJ. Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res. 2004;32:5693–702.

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Feng L, Said M, Balderman S, Fayazi Z, Liu Y, et al. Analysis of the 2.0 A crystal structure of the protein-DNA complex of the human PDEF Ets domain bound to the prostate specific antigen regulatory site. Biochemistry. 2005;44:7095–106.

    Article  PubMed  CAS  Google Scholar 

  43. Chen H, Bieberich CJ. Structural and functional analysis of domains mediating interaction between NKX-3.1 and PDEF. J Cell Biochem. 2005;94:168–77.

    Article  PubMed  CAS  Google Scholar 

  44. Ghadersohi A, Sood AK. Prostate epithelium-derived Ets transcription factor mRNA is over expressed in human breast tumors and is a candidate breast tumor marker and a breast tumor antigen. Clin Cancer Res. 2001;7:2731–8.

    PubMed  CAS  Google Scholar 

  45. Sood AK, Saxena R, Groth J, Desouki MM, Cheewakriangkrai C, Rodabaugh KJ, et al. Expression characteristics of PDEF support a role in breast and prostate cancer progression. Hum Pathol. 2007;38:1628–38.

    Article  PubMed  CAS  Google Scholar 

  46. Sood AK, Wang J, Mhawech-Fauceglia P, Jana B, Liang P, Geradts J. Sam-pointed domain containing Ets transcription factor in luminal breast cancer pathogenesis. Cancer Epidemiol Biomark Prev. 2009;18:1899–903.

    Article  CAS  Google Scholar 

  47. Lu J, Celis E. Use of two predictive algorithms of the world-wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res. 2000;60:5223–7.

    PubMed  CAS  Google Scholar 

  48. Friede, Rammensee, Stevanovic. MHC ligands and peptide motifs: 1st listing. Immunogenetics. 1995;41:178–228.

    Article  PubMed  Google Scholar 

  49. Zeh HJ, Leder GH, Lotze MT, Salter RD, Tector M, Stuber G, et al. Flow-cytometric determination of peptide-class I complex formation. Identification of p53 peptides that bind to HLA-A2. Hum Immunol. 1994;39:79–86.

    Article  PubMed  CAS  Google Scholar 

  50. Rhodes A, Jasani B, Balaton AJ, Barnes DM, Miller KD. Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Path. 2000;53:688–96.

    Article  PubMed  CAS  Google Scholar 

  51. Elledge RM, Osborne CK. Oestrogen receptors and breast cancer. BMJ. 1997;314:1843–4.

    PubMed  CAS  Google Scholar 

  52. André F, Janssens B, Bruyneel E, van Roy F, Gespach C, Mareel M, et al. Alpha-catenin is required for IGF-I-induced cellular migration but not invasion in human colonic cancer cells. Oncogene. 2004;23:1177–86.

    Article  PubMed  CAS  Google Scholar 

  53. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    Article  PubMed  CAS  Google Scholar 

  54. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene. 2004;23:465–73.

    Article  PubMed  CAS  Google Scholar 

  55. Salceda S, Tang T, Kmet M, Munteanu A, Ghosh M, Macina R, et al. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res. 2005;306:128–41.

    Article  PubMed  CAS  Google Scholar 

  56. Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, et al. The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res. 2005;65:5696–702.

    Article  PubMed  CAS  Google Scholar 

  57. Kendrick JE, Estes JM, Straughn JM Jr, Alvarez RD, Buchsbaum DJ. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its therapeutic potential in breast and gynecologic cancers. Gynecol Oncol. 2007;106:614–21.

    Article  PubMed  CAS  Google Scholar 

  58. Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003;18:849–61.

    Article  PubMed  CAS  Google Scholar 

  59. Blumenthal RD, Leon E, Hansen HJ, Goldenberg DM. Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer. 2007;7:2.

    Article  PubMed  CAS  Google Scholar 

  60. http://cgap.nci.nih.gov/Tissues/VirtualNorthern?TEXT=0&ORG=Hs&CID=466814. Accessed 15 June 2009.

  61. Tringler B, Zhuo S, Pilkington G, Torkko KC, Singh M, Lucia MS, et al. Shroyer KR.B7-h4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res. 2005;11:1842–8.

    Article  PubMed  CAS  Google Scholar 

  62. Maraqa L, Cummings M, Peter MB, Shaaban AM, Horgan K, Hanby AM, et al. Carcinoembryonic antigen cell adhesion molecule 6 predicts breast cancer recurrence following adjuvant tamoxifen. Clin Cancer Res. 2008;14:405–11.

    Article  PubMed  CAS  Google Scholar 

  63. Tavakkol A, Zouboulis CC, Duell EA, Voorhees JJ. A retinoic acid-inducible skin-specific gene (RIS-1/psoriasin): molecular cloning and analysis of gene expression in human skin in vivo and cultured skin cells in vitro. Mol Biol Rep. 1994;20:75–83.

    Article  PubMed  CAS  Google Scholar 

  64. Krop I, März A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M, et al. A putative role for psoriasin in breast tumor progression. Cancer Res. 2005;65:11326–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CA 86164 from National Cancer Institute, BC045095 from Department of Defense and #62-2333 from Roswell Park Alliance Foundation. The institutional facilities used in this research were supported by Roswell Park Cancer Center Support Grant P30CA16056. The author declares no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani K. Sood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, A.K. PDEF and PDEF-induced proteins as candidate tumor antigens for T cell and antibody-mediated immunotherapy of breast cancer. Immunol Res 46, 206–215 (2010). https://doi.org/10.1007/s12026-009-8129-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8129-2

Keywords

Navigation