Skip to main content

Advertisement

Log in

The allure and peril of hematopoietic stem cell transplantation: overcoming immune challenges to improve success

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Since its inception in the mid-twentieth century, the complication limiting the application and utility of allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat patients with hematopoietic cancer is the development of graft-versus-host disease (GVHD). Ironically, GVHD is induced by the cells (T lymphocytes) transplanted for the purpose of eliminating the malignancy. Damage ensuing to multiple tissues, e.g., skin, GI, liver, and others including the eye, provides the challenge of regulating systemic and organ-specific GVH responses. Because the immune system is also targeted by GVHD, this both: (a) impairs reconstitution of immunity post-transplant resulting in patient susceptibility to lethal infection and (b) markedly diminishes the individual’s capacity to generate anti-cancer immunity—the raison d’etre for undergoing allo-HSCT. We hypothesize that deleting alloreactive T cells ex vivo using a new strategy involving antigen stimulation and alkylation will prevent systemic GVHD thereby providing a platform for the generation of anti-tumor immunity. Relapse also remains the major complication following autologous HSCT (auto-HSCT). While GVHD does not complicate auto-HSCT, its absence removes significant grant anti-tumor responses (GVL) and raises the challenge of generating rapid and effective anti-tumor immunity early post-transplant prior to immune reconstitution. We hypothesize that effective vaccine usage to stimulate tumor-specific T cells followed by their amplification using targeted IL-2 can be effective in both the autologous and allogeneic HSCT setting. Lastly, our findings support the notion that the ocular compartment can be locally targeted to regulate visual complications of GVHD which may involve both alloreactive and self-reactive (i.e., autoimmune) responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pasquini M, Wang Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR summary slides. 2012.

  2. Saber W, Opie S, Rizzo JD, Zhang M-J, Horowitz MM, Schriber J. Outcomes after matched unrelated donor vs. identical sibling hematopoietic cell transplantation (HCT) in adults with acute myelogenous leukemia (AML). Blood. 2012;. doi:10.1182/blood-2011-09-381699.

    PubMed Central  PubMed  Google Scholar 

  3. Hale G, Cobbold S, Waldmann H. T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplantation. 1988;45(4):753–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chao NJ, Negrin RS, Connor RF. Prevention of acute graft-versus-host disease: Trials of T cell depletion. Waltham, MA: UpToDate; 2013.

    Google Scholar 

  5. Cavazzana-Calvo M, Stephan J, Sarnacki S, Chevret S, Fromont C, de Coene C, et al. Attenuation of graft-versus-host disease and graft rejection by ex vivo immunotoxin elimination of alloreactive T cells in an H-2 haplotype disparate mouse combination. Blood. 1994;83(1):288–98.

    CAS  PubMed  Google Scholar 

  6. Martin PJ, Pei J, Gooley T, Anasetti C, Appelbaum FR, Deeg J, et al. Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Bio Blood Marrow Transplant. 2004;10(8):552–60.

    Article  CAS  Google Scholar 

  7. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo–generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood. 1999;93(7):2336–41.

    CAS  PubMed  Google Scholar 

  8. Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, Nishida T, et al. Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood. 2010;115(23):4923–33. doi:10.1182/blood-2009-12-260539.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70. doi:10.1182/blood-2010-07-293795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. O’Reilly RJ, Collins N, Dinsmore R, Kernan N, Siena S, Brochstein J, et al. Transplantation of HLA-mismatched marrow depleted of T-cells by lectin agglutination and E-rosette depletion. Tokai J Exp Clin Med. 1985;10(2–3):99–107.

    PubMed  Google Scholar 

  11. Papadakis V, Mackinnon S, Kernan NA. Differential effect of pre-transplant cytoreduction on recovery of day zero host circulating cells. Bone Marrow Transplant. 1994;14(4):623–30.

    CAS  PubMed  Google Scholar 

  12. Chen BJ, Cui X, Liu C, Chao NJ. Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process. Blood. 2002;99(9):3083–8. doi:10.1182/blood.V99.9.3083.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner JE, Thompson JS, Carter SL, Kernan NA. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell depletion trial): a multi-centre, randomised phase II–III trial. Lancet. 2005;366(9487):733–41. doi:10.1016/S0140-6736(05)66996-6.

    Article  CAS  PubMed  Google Scholar 

  14. Komanduri KV, Couriel D, Champlin RE. Graft-versus-host disease after allogeneic stem cell transplantation: evolving concepts and novel therapies including photopheresis. Biol Blood Marrow Transplant. 2006;12(1, Supplement 2):1–6. doi:10.1016/j.bbmt.2005.11.003.

    Article  PubMed  Google Scholar 

  15. Couriel D, Hosing C, Saliba R, Shpall EJ, Andelini P, Popat U, et al. Extracorporeal photopheresis for acute and chronic graft-versus-host disease: does it work? Biol Blood Marrow Transplant. 2006;12(1, Supplement 2):37–40. doi:10.1016/j.bbmt.2005.11.009.

    Article  PubMed  Google Scholar 

  16. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997;276(5319):1719–24. doi:10.1126/science.276 5319.1719.

    Article  CAS  PubMed  Google Scholar 

  17. Luznik L, Bolaños-Meade J, Zahurak M, Chen AR, Smith BD, Brodsky R, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30. doi:10.1182/blood-2009-11-251595.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Luznik L, Jones RJ, Fuchs EJ. High-dose cyclophosphamide for graft-versus-host disease prevention. Curr Opin Hematol. 2010;17(6):493–9. doi:10.1097/MOH.0b013e32833eaf1b.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ciurea SO, Mulanovich V, Saliba RM, Bayraktar UD, Jiang Y, Bassett R, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Bio Blood Marrow Transplant. 2012;18(12):1835–44.

    Article  Google Scholar 

  20. Glucksberg H, Fefer A. Chemotherapy of established graft-versus-host disease in mice. Transplantation. 1972;13(3):300–5.

    Article  CAS  PubMed  Google Scholar 

  21. Eto M, Mayumi H, Tomita Y, Yoshikai Y, Nomoto K. Intrathymic clonal deletion of V beta 6 + T cells in cyclophosphamide-induced tolerance to H-2-compatible, Mls-disparate antigens. J Exp Med. 1990;171(1):97–113. doi:10.1084/jem.171.1.97.

    Article  CAS  PubMed  Google Scholar 

  22. Eto M, Mayumi H, Tomita Y, Yoshikai Y, Nishimura Y, Maeda T, et al. Specific destruction of host-reactive mature T cells of donor origin prevents graft-versus-host disease in cyclophosphamide-induced tolerant mice. J Immunol. 1991;146(5):1402–9.

    CAS  PubMed  Google Scholar 

  23. Maeda T, Eto M, Nishimura Y, Nomoto K, Kong YY. Direct evidence for clonal destruction of allo-reactive T cells in the mice treated with cyclophosphamide after allo-priming. Immunology. 1993;78(1):113–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Luznik L, Engstrom LW, Iannone R, Fuchs EJ. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Bio Blood Marrow Transplant. 2002;8(3):131–8.

    Article  CAS  Google Scholar 

  25. Grosso D, Carabasi M, Filicko-O’Hara J, Kasner M, Wagner JL, Colombe B, et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood. 2011;118(17):4732–9. doi:10.1182/blood-2011-07-365338.

    Article  CAS  PubMed  Google Scholar 

  26. Ross D, Jones M, Komanduri K, Levy RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by Post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Bio Blood Marrow Transplant. 2013;19(10):1430–8.

    Article  CAS  Google Scholar 

  27. Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids. 2010;2010:543531. doi:10.4061/2010/543531.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12(2):104–20. doi:10.1038/nrc3185.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ganguly S, Fuchs E, Radojcic V, Luznik L. Critical role of CD4+ Foxp3+ T cells in Gvhd prevention with high-dose posttransplant cyclophosphamide (Cy). ASH Annu Meet Abstr. 2010;116(21):3749.

    Google Scholar 

  30. Ross DB III, Komanduri KV, Levy RB. Post-transplant cyclophosphamide (PTC) Gvhd prophylaxis: kinetics of proliferation of donor T cells affects susceptibility to PTC administration. ASH Ann Meet Abstr. 2011;118(21):4029.

    Google Scholar 

  31. Kanakry CG, Ganguly S, Zahurak M, Bolaños-Meade J, Thoburn C, Perkins B, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Trans Med. 2013;5(211):211ra157. doi:10.1126/scitranslmed.3006960.

  32. Mackall C, Bare C, Granger L, Sharrow S, Titus J, Gress R. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol. 1996;156(12):4609–16.

    CAS  PubMed  Google Scholar 

  33. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood. 2001;97(5):1491–7. doi:10.1182/blood.V97.5.1491.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson LDS, Jameson SC. Self-Specific CD8+ T cells maintain a semi-naive state following lymphopenia-induced proliferation. J Immunol. 2010;184(10):5604–11. doi:10.4049/jimmunol.1000109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Fuchs EJ. Selective allodepletion: have we finally found the holy grail? Bio Blood Marrow Transplant. 2013;19(10):1413–4.

    Article  Google Scholar 

  36. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61. doi:10.1016/S0140-6736(09)60237-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tivol E, Komorowski R, Drobyski WR. Emergent autoimmunity in graft-versus-host disease. Blood. 2005;105(12):4885–91. doi:10.1182/blood-2004-12-4980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Carlson EC, Drazba J, Yang X, Perez VL. Visualization and characterization of inflammatory cell recruitment and migration through the corneal stroma in endotoxin-induced keratitis. Invest Ophthalmol Vis Sci. 2006;47(1):241–8. doi:10.1167/iovs.04-0741.

    Article  PubMed  Google Scholar 

  39. Chinnery HR, Carlson EC, Sun Y, Lin M, Burnett SH, Perez VL, et al. Bone marrow chimeras and c-fms conditional ablation (Mafia) mice reveal an essential role for resident myeloid cells in lipopolysaccharide/TLR4-induced corneal inflammation. J Immunol. 2009;182(5):2738–44. doi:10.4049/jimmunol.0803505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tan Y, Abdulreda MH, Cruz-Guilloty F, Cutrufello N, Shishido A, Martinez RE, et al. Role of T cell recruitment and chemokine-regulated intra-graft T cell motility patterns in corneal allograft rejection. Am J Transplant. 2013;13(6):1461–73. doi:10.1111/ajt.12228.

    Article  CAS  PubMed  Google Scholar 

  41. Riemens A, te Boome L, Imhof S, Kuball J, Rothova A. Current insights into ocular graft-versus-host disease. Curr Opin Ophthalmol. 2010;21(6):485–94. doi:10.1097/ICU.0b013e32833eab64.

    Article  PubMed  Google Scholar 

  42. Hessen M, Akpek EK. Ocular graft-versus-host disease. Curr Opin Allergy Clin Immunol. 2012;12(5):540–7. doi:10.1097/ACI.0b013e328357b4b9.

    Article  CAS  PubMed  Google Scholar 

  43. Rouquette-Gally AM, Boyeldieu D, Prost AC, Gluckman E. Autoimmunity after allogeneic bone marrow transplantation. A study of 53 long-term-surviving patients. Transplantation. 1988;46(2):238–40.

    Article  CAS  PubMed  Google Scholar 

  44. Sherer Y, Shoenfeld Y. Autoimmune diseases and autoimmunity post-bone marrow transplantation. Bone Marrow Transplant. 1998;22(9):873–81. doi:10.1038/sj.bmt.1701437.

    Article  CAS  PubMed  Google Scholar 

  45. Marcellus DC, Altomonte VL, Farmer ER, Horn TD, Freemer CS, Grant J, et al. Etretinate therapy for refractory sclerodermatous chronic graft-versus-host disease. Blood. 1999;93(1):66–70.

    CAS  PubMed  Google Scholar 

  46. Lamey PJ, Lundy FT, Al-Hashimi I. Sjogren’s syndrome: a condition with features of chronic graft-versus-host disease: does duct cell adhesion or permeability play a role in pathogenesis? Med Hypotheses. 2004;62(5):825–9. doi:10.1016/j.mehy.2003.12.025.

    Article  PubMed  Google Scholar 

  47. Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945–56. doi:10.1016/j.bbmt.2005.09.004.

    Article  PubMed  Google Scholar 

  48. Baker MB, Altman NH, Podack ER, Levy RB. The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med. 1996;183(6):2645–56.

    Article  CAS  PubMed  Google Scholar 

  49. Baker MB, Riley RL, Podack ER, Levy RB. Graft-versus-host-disease-associated lymphoid hypoplasia and B cell dysfunction is dependent upon donor T cell-mediated Fas-ligand function, but not perforin function. Proc Natl Acad Sci USA. 1997;94(4):1366–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hollander GA, Widmer B, Burakoff SJ. Loss of normal thymic repertoire selection and persistence of autoreactive T cells in graft vs host disease. J Immunol. 1994;152(4):1609–17.

    CAS  PubMed  Google Scholar 

  51. Teshima T, Reddy P, Liu C, Williams D, Cooke KR, Ferrara JL. Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood. 2003;102(2):429–35. doi:10.1182/blood-2003-01-0266.

    Article  CAS  PubMed  Google Scholar 

  52. Sakoda Y, Hashimoto D, Asakura S, Takeuchi K, Harada M, Tanimoto M, et al. Donor-derived thymic-dependent T cells cause chronic graft-versus-host disease. Blood. 2007;109(4):1756–64. doi:10.1182/blood-2006-08-042853.

    Article  CAS  PubMed  Google Scholar 

  53. Rangarajan H, Yassai M, Subramanian H, Komorowski R, Whitaker M, Gorski J, et al. Emergence of T cells that recognize nonpolymorphic antigens during graft-versus- host disease. Blood. 2012;119(26):6354–64. doi:10.1182/blood-2012-01-401596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 2002;110(2):185–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hu H-M, Poehlein CH, Urba WJ, Fox BA. Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 2002;62(14):3914–9.

    CAS  PubMed  Google Scholar 

  56. Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu H-M. Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol. 2003;33(8):2123–32. doi:10.1002/eji.200324034.

    Article  CAS  PubMed  Google Scholar 

  57. Wang L-X, Li R, Yang G, Lim M, O’Hara A, Chu Y, et al. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res. 2005;65(22):10569–77. doi:10.1158/0008-5472.can-05-2117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Keith MR, Levy RB. Transplant conditions determine the contribution of homeostatically expanded donor CD8 memory cells to host lymphoid reconstitution following syngeneic HCT. Exp Hematol. 2007;35(8):1303–15. doi:10.1016/j.exphem.2007.04.008.

    Article  CAS  PubMed  Google Scholar 

  59. Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer. 2010;10(3):213–21. doi:10.1038/nrc2804.

    Article  CAS  PubMed  Google Scholar 

  60. Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 2010;33(1):1–7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA. 1986;83(10):3407–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA. 1994;91(8):3077–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269(5230):1585–8.

    Article  CAS  PubMed  Google Scholar 

  64. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278(5335):117–20. doi:10.1126/science.278.5335.117.

    Article  CAS  PubMed  Google Scholar 

  65. Janetzki S, Blachere NE, Srivastava PK. Generation of tumor-specific cytotoxic T lymphocytes and memory T cells by immunization with tumor-derived heat shock protein gp96. J Immunother. 1998;21(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  66. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol. 2005;6(6):593–9. doi:10.1038/ni1201.

    Article  CAS  PubMed  Google Scholar 

  67. Binder RJ, Kelly JB, Vatner RE, Srivastava PK. Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J Immunol. 2007;179(11):7254–61.

    Article  CAS  PubMed  Google Scholar 

  68. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol. 2000;12(11):1539–46. doi:10.1093/intimm/12.11.1539.

    Article  CAS  PubMed  Google Scholar 

  69. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, et al. The endoplasmic reticulum-resident heat shock protein gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem. 2002;277(23):20847–53. doi:10.1074/jbc.M200425200.

    Article  CAS  PubMed  Google Scholar 

  70. Younes A. A phase II study of heat shock protein-peptide complex-96 vaccine therapy in patients with indolent non-Hodgkin’s lymphoma. Clin Lymphoma. 2003;4(3):183–5.

    Article  CAS  PubMed  Google Scholar 

  71. Oki Y, McLaughlin P, Fayad LE, Pro B, Mansfield PF, Clayman GL, et al. Experience with heat shock protein-peptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer. 2007;109(1):77–83. doi:10.1002/cncr.22389.

    Article  CAS  PubMed  Google Scholar 

  72. Randazzo M, Terness P, Opelz G, Kleist C. Active-specific immunotherapy of human cancers with the heat shock protein gp96—revisited. Int J Cancer. 2012;130(10):2219–31. doi:10.1002/ijc.27332.

    Article  CAS  PubMed  Google Scholar 

  73. Yamazaki K, Nguyen T, Podack ER. Cutting Edge: tumor secreted heat shock-fusion protein elicits CD8 cells for rejection. J Immunol. 1999;163(10):5178–82.

    CAS  PubMed  Google Scholar 

  74. Strbo N, Yamazaki K, Lee K, Rukavina D, Podack ER. Heat shock fusion protein gp96-Ig mediates strong CD8 CTL expansion in vivo. Am J Reprod Immunol. 2002;48(4):220–5.

    Article  PubMed  Google Scholar 

  75. Strbo N, Oizumi S, Sotosek-Tokmadzic V, Podack ER. Perforin is required for innate and adaptive immunity induced by heat shock protein gp96. Immunity. 2003;18(3):381–90. doi:10.1016/s1074-7613(03)00056-6.

    Article  CAS  PubMed  Google Scholar 

  76. Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J Immunol. 2007;179(4):2310–7.

    Article  CAS  PubMed  Google Scholar 

  77. Oizumi S, Deyev V, Yamazaki K, Schreiber T, Strbo N, Rosenblatt J, et al. Surmounting tumor-induced immune suppression by frequent vaccination or immunization in the absence of B cells. J Immunother. 2008;31(4):394–401.

    Article  PubMed  Google Scholar 

  78. Schreiber TH, Deyev VV, Rosenblatt JD, Podack ER. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res. 2009;69(5):2026–33. doi:10.1158/0008-5472.can-08-3706.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Strbo N, Pahwa S, Kolber MA, Gonzalez L, Fisher E, Podack ER. Cell-secreted gp96-Ig-peptide complexes induce lamina propria and intraepithelial CD8+ cytotoxic T lymphocytes in the intestinal mucosa. Mucosal Immunol. 2010;3(2):182–92. doi:10.1038/mi.2009.127.

    Article  CAS  PubMed  Google Scholar 

  80. Strbo N, Vaccari M, Pahwa S, Kolber MA, Fisher E, Gonzalez L, et al. Gp96 SIV Ig immunization induces potent polyepitope specific, multifunctional memory responses in rectal and vaginal mucosa. Vaccine. 2011;29(14):2619–25. doi:10.1016/j.vaccine.2011.01.044.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Strbo N, Vaccari M, Pahwa S, Kolber MA, Doster MN, Fisher E, et al. Cutting Edge: novel vaccination modality provides significant protection against mucosal infection by highly pathogenic simian immunodeficiency virus. J Immunol. 2013;190(6):2495–9. doi:10.4049/jimmunol.1202655.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Raez LE, Walker GR, Baldie P, Fisher E, Gomez JE, Tolba K, et al. CD8 T cell response in a phase I study of therapeutic vaccination of advanced NSCLC with allogeneic tumor cells secreting endoplasmic reticulum-chaperone gp96-Ig-peptide complexes. Adv Lung Cancer. 2013;2(1):9–18.

    Article  Google Scholar 

  83. Slavin S, Ackerstein A, Kedar E, Weiss L. IL-2 activated cell-mediated immunotherapy: control of minimal residual disease in malignant disorders by allogeneic lymphocytes and IL-2. Bone Marrow Transplant. 1990;6(Suppl 1):86–90.

    PubMed  Google Scholar 

  84. Ackerstein A, Kedar E, Slavin S. Use of recombinant human interleukin-2 in conjunction with syngeneic bone marrow transplantation in mice as a model for control of minimal residual disease in malignant hematologic disorders. Blood. 1991;78(5):1212–5.

    CAS  PubMed  Google Scholar 

  85. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311(5769):1924–7. doi:10.1126/science.1122927.

    Article  CAS  PubMed  Google Scholar 

  86. Létourneau S, van Leeuwen EMM, Krieg C, Martin C, Pantaleo G, Sprent J, et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc Natl Acad Sci USA. 2010;107(5):2171–6. doi:10.1073/pnas.0909384107.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA. 2010;107(26):11906–11. doi:10.1073/pnas.1002569107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Mostböck S, Lutsiak MEC, Milenic DE, Baidoo K, Schlom J, Sabzevari H. IL-2/anti-IL-2 antibody complex enhances vaccine-mediated antigen-specific CD8+ T cell responses and increases the ratio of effector/memory CD8+ T cells to regulatory T cells. J Immunol. 2008;180(7):5118–29.

    Article  PubMed  Google Scholar 

  89. Jin G-H, Hirano T, Murakami M. Combination treatment with IL-2 and anti-IL-2 mAbs reduces tumor metastasis via NK cell activation. Int Immunol. 2008;20(6):783–9. doi:10.1093/intimm/dxn036.

    Article  CAS  PubMed  Google Scholar 

  90. Murali-Krishna K, Ahmed R. Cutting edge: naive T cells masquerading as memory cells. J Immunol. 2000;165(4):1733–7.

    Article  CAS  PubMed  Google Scholar 

  91. Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med. 2000;192(4):557–64. doi:10.1084/jem.192.4.557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Pope C, Kim S-K, Marzo A, Williams K, Jiang J, Shen H, et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol. 2001;166(5):3402–9.

    Article  CAS  PubMed  Google Scholar 

  93. Castro I, Dee MJ, Malek TR. Transient enhanced IL-2R signaling early during priming rapidly amplifies development of functional CD8+ T effector-memory cells. J Immunol. 2012;189(9):4321–30. doi:10.4049/jimmunol.1202067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Borrello I, Sotomayor EM, Rattis F-M, Cooke SK, Gu L, Levitsky HI. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)–producing tumor vaccines. Blood. 2000;95(10):3011–9.

    CAS  PubMed  Google Scholar 

  95. Jing W, Gershan JA, Johnson BD. Depletion of CD4 T cells enhances immunotherapy for neuroblastoma after syngeneic HSCT but compromises development of antitumor immune memory. Blood. 2009;113(18):4449–57. doi:10.1182/blood-2008-11-190827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Jing W, Yan X, Hallett WHD, Gershan JA, Johnson BD. Depletion of CD25+ T cells from hematopoietic stem cell grafts increases posttransplantation vaccine-induced immunity to neuroblastoma. Blood. 2011;117(25):6952–62. doi:10.1182/blood-2010-12-326108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Hirokawa K, Sado T, Kubo S, Kamisaku H, Hitomi K, Utsuyama M. Intrathymic T cell differentiation in radiation bone marrow chimeras and its role in T cell emigration to the spleen. An immunohistochemical study. J Immunol. 1985;134(6):3615–24.

    CAS  PubMed  Google Scholar 

  98. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the support of the Sylvester Comprehensive Cancer Center and the Sheila and David Fuente Graduate Program in Cancer Biology. The authors also thank the Sylvester Comprehensive Cancer Center for their continuous support as well as the Flow Cytometry Facility. We also wish to gratefully acknowledge the excellent studies performed by many of our departmental colleagues as well as our collaborators, Drs. Sudipto Ganguly and Leo Luznik at Johns Hopkins University. The work was supported by Grants from the National Institutes of Health (R01CA120776 and R01AI046689) (R.B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, R.G., Ross, D.B., Barreras, H. et al. The allure and peril of hematopoietic stem cell transplantation: overcoming immune challenges to improve success. Immunol Res 57, 125–139 (2013). https://doi.org/10.1007/s12026-013-8450-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8450-7

Keywords

Navigation