Skip to main content

Advertisement

Log in

Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer’s Disease: a Review of Current Evidence

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is considered as one of the most prevalent neurodegenerative disorders characterized by progressive loss of mental function and ability to learn. AD is a multifactorial disorder. Various hypotheses are suggested for the pathophysiology of AD including “Aβ hypothesis,” “tau hypothesis,” and “cholinergic hypothesis.” Recently, it has been demonstrated that neuroinflammation is involved in the pathogenesis of AD. Neuroinflammation causes synaptic dysfunction and neuronal death within the brain. Excessive production of pro-inflammatory mediators induces Aβ peptide production/accumulation and hyperphosphorylated tau generating inflammatory molecules and cytokines. These inflammatory molecules disrupt blood–brain barrier integrity and increase the production of Aβ42 oligomers. Retinoids and carotenoids are potent antioxidants and anti-inflammatory agents having neuroprotective properties. They are able to prevent disease progression through several mechanisms such as suppression of Aβ peptide production/accumulation, oxidative stress, and pro-inflammatory mediator’s secretion as well as improvement of cognitive performance. These observations, therefore, confirm the neuroprotective role of retinoids and carotenoids through multiple pathways. Therefore, the administration of these nutrients is considered as a promising approach to the prevention and/or treatment of AD in the future. The aim of this review is to present existing evidences regarding the beneficial effects of retinoids and carotenoids on AD’s risk and outcomes, seeking the mechanism of their action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alzheimer’s disease facts and figures (2015) Alzheimer’s & dementia: the journal of the Alzheimer’s Association 11:332–384

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  • Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA (2015a) Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. J Mol Neurosci 57:605–613

    Article  CAS  PubMed  Google Scholar 

  • Abdolahi M, Yavari P, Honarvar NM, Bitarafan S, Mahmoudi M, Saboor-Yaraghi AA (2015b) Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. Journal of molecular neuroscience: MN 57:605–613. doi:10.1007/s12031-015-0643-1

    Article  CAS  PubMed  Google Scholar 

  • Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30:1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Ahlemeyer B, Krieglstein J (2000) Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis. Neurochem Int 36:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AU (2011) An overview of inflammation: mechanism and consequences. Front Biol 6:274–281

    CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  • Al Nimer F, Beyeen AD, Lindblom R, Ström M, Aeinehband S, Lidman O, Piehl F (2011) Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury. Brain Behav Immun 25:981–990

    Article  CAS  PubMed  Google Scholar 

  • Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A, Cordero MD (2014) NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 36:111–117

    Article  PubMed  CAS  Google Scholar 

  • Alpsoy L, Yildirim A, Agar G (2009) The antioxidant effects of vitamin A, C, and E on aflatoxin B1-induced oxidative stress in human lymphocytes. Toxicol Ind Health 25:121–127

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Gill KD, Mahdi AA (2014) Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology 76 Pt A:27–50. doi:10.1016/j.neuropharm.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J Clin Investig 97:2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunkumar E, Bhuvaneswari S, Anuradha CV (2012) An intervention study in obese mice with astaxanthin, a marine carotenoid—effects on insulin signaling and pro-inflammatory cytokines. Food & function 3:120–126

    Article  CAS  Google Scholar 

  • Asadi F et al (2015) Reversal effects of crocin on amyloid β-induced memory deficit: modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 139:47–58

    Article  CAS  PubMed  Google Scholar 

  • Balducci C et al (2015) The continuing failure of bexarotene in Alzheimer’s disease mice. Journal of Alzheimer’s disease: JAD 46:471–482

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2009) Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 6:693–696

    Article  CAS  PubMed  Google Scholar 

  • Baune BT (2015) Inflammation and neurodegenerative disorders: is there still hope for therapeutic intervention? Current opinion in psychiatry 28:148–154

    PubMed  Google Scholar 

  • Behairi N, Belkhelfa M, Mesbah-Amroun H, Rafa H, Belarbi S, Tazir M, Touil-Boukoffa C (2015) All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer’s disease. Neuroimmunomodulation 22:385–393

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dor A et al (2005) Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther 4:177–186

    CAS  PubMed  Google Scholar 

  • Bezzi P et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710. doi:10.1038/89490

    Article  CAS  PubMed  Google Scholar 

  • Bohn T (2008) Bioavailability of non-provitamin A carotenoids. Curr Nutr Food Sci 4:240–258

    Article  CAS  Google Scholar 

  • Borel P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56:228–240

    Article  CAS  PubMed  Google Scholar 

  • Borrmann C, Stricker R, Reiser G (2011) Retinoic acid-induced upregulation of the metalloendopeptidase nardilysin is accelerated by co-expression of the brain-specific protein p42 IP4 (centaurin α1; ADAP1) in neuroblastoma cells. Neurochem Int 59:936–944

    Article  CAS  PubMed  Google Scholar 

  • Bouayed J, Bohn T (2012) Dietary derived antioxidants: implications on health. INTECH Open Access Publisher

  • Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595

    Article  CAS  PubMed  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    CAS  PubMed  Google Scholar 

  • Cagnin A et al (2001) In-vivo measurement of activated microglia in dementia. Lancet (London, England) 358:461–467. doi:10.1016/s0140-6736(01)05625-2

    Article  CAS  Google Scholar 

  • Carey M, Smale S (2000) Transcriptional regulation in eukaryotes. Concepts, strategies, and techniques. Cold Spring Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Chan Kc, Pen PJ, Yin Mc (2012) Anticoagulatory and antiinflammatory effects of astaxanthin in diabetic rats. J Food Sci 77(2):H76–800

  • Chang C-H, Chen C-Y, Chiou J-Y, Peng RY, Peng C-H (2010) Astaxanthine secured apoptotic death of PC12 cells induced by β-amyloid peptide 25–35: its molecular action targets. J Med Food 13:548–556

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2015) Lycopene attenuates Aβ 1–42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease. Neurosci Lett 608:28–33

    Article  CAS  PubMed  Google Scholar 

  • Chew B, Wong T, Michal J, Standaert F, Heirman L (1991) Subcellular distribution of beta-carotene, retinol, and alpha-tocopherol in porcine lymphocytes after a single injection of beta-carotene. J Anim Sci 69:4892–4897

    Article  CAS  PubMed  Google Scholar 

  • Choi W-H et al (2005) Anti-inflammatory roles of retinoic acid in rat brain astrocytes: suppression of interferon-γ-induced JAK/STAT phosphorylation. Biochem Biophys Res Commun 329:125–131

    Article  CAS  PubMed  Google Scholar 

  • Ciccone MM et al (2013) Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm 2013:782137

    Article  CAS  Google Scholar 

  • Corbett A et al (2012) Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 11:833–846

    Article  CAS  PubMed  Google Scholar 

  • Craig-Schapiro R et al (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68:903–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crichton GE, Bryan J, Murphy KJ (2013) Dietary antioxidants, cognitive function and dementia—a systematic review. Plant Foods Hum Nutr 68:279–292

    Article  CAS  PubMed  Google Scholar 

  • Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C et al (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai W, Yang J, Chen T, Yang Z (2014) Protective effects of bexarotene against amyloid-β25-35-induced dysfunction in hippocampal neurons through the insulin signaling pathway. Neurodegener Dis 14:77–84

    Article  CAS  PubMed  Google Scholar 

  • Dal Pra I et al (2015) Do astrocytes collaborate with neurons in spreading the "infectious" abeta and tau drivers of Alzheimer’s disease? The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 21:9–29. doi:10.1177/1073858414529828

    Article  CAS  Google Scholar 

  • Dal Prà I et al (2015) Do astrocytes collaborate with neurons in spreading the “infectious” Aβ and tau drivers of Alzheimer’s disease? Neuroscientist 21:9–29

    Article  PubMed  CAS  Google Scholar 

  • Dawson MI, Xia Z (2012) The retinoid X receptors and their ligands. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1821:21–56

    CAS  Google Scholar 

  • de Oliveira BF, Veloso CA, Nogueira-Machado JA, de Moraes EN, dos Santos RR, Cintra MT, Chaves MM (2012) Ascorbic acid, alpha-tocopherol, and beta-carotene reduce oxidative stress and proinflammatory cytokines in mononuclear cells of Alzheimer’s disease patients. Nutr Neurosci 15:244–251. doi:10.1179/1476830512y.0000000019

    Article  PubMed  CAS  Google Scholar 

  • De Simone R, Ajmone-Cat MA, Minghetti L (2004) Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol Neurobiol 29:197–212. doi:10.1385/mn:29:2:197

    Article  CAS  PubMed  Google Scholar 

  • de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64:37–43

    Article  PubMed  Google Scholar 

  • Deane R et al (2003) RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Defo MA, Pierron F, Spear PA, Bernatchez L, Campbell PG, Couture P (2012) Evidence for metabolic imbalance of vitamin A2 in wild fish chronically exposed to metals. Ecotoxicol Environ Saf 85:88–95

    Article  CAS  PubMed  Google Scholar 

  • Dheen ST, Jun Y, Yan Z, Tay SS, Ang Ling E (2005) Retinoic acid inhibits expression of TNF-α and iNOS in activated rat microglia. Glia 50:21–31

    Article  PubMed  Google Scholar 

  • Dias IH et al (2014) Plasma levels of HDL and carotenoids are lower in dementia patients with vascular comorbidities. Journal of Alzheimer’s disease: JAD 40:399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84:932–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y et al (2008a) Retinoic acid attenuates β-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 28:11622–11634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y et al (2008b) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci Off J Soc Neurosci 28:11622–11634. doi:10.1523/jneurosci.3153-08.2008

    Article  CAS  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  CAS  PubMed  Google Scholar 

  • Dorosty-Motlagh AR, Honarvar NM, Sedighiyan M, Abdolahi M (2016) The molecular mechanisms of vitamin A deficiency in multiple sclerosis. J Mol Neurosci 60:82–90

    Article  CAS  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  CAS  PubMed  Google Scholar 

  • Eisele YS et al (2010) Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis. Science 330:980–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Agamey A, McGarvey DJ (2008) Carotenoid radicals and radical ions. In: Carotenoids. Springer, p 119–154

  • Endres K et al (2014) Increased CSF APPs-α levels in patients with Alzheimer disease treated with acitretin. Neurology 83:1930–1935

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B (2010) T cell migration into the central nervous system during health and disease: different molecular keys allow access to different central nervous system compartments. Clinical and Experimental Neuroimmunology 1:79–93

    Article  CAS  Google Scholar 

  • Feart C et al. (2015) Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. J Gerontol Ser A Biol Sci Med Sci glv135

  • Fiala M, Liu Q, Sayre J, Pop V, Brahmandam V, Graves M, Vinters H (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur J Clin Investig 32:360–371

    Article  CAS  Google Scholar 

  • Filteau SM, Rollins NC, Coutsoudis A, Sullivan KR, Willumsen JF, Tomkins AM (2001) The effect of antenatal vitamin A and β-carotene supplementation on gut integrity of infants of HIV-infected South African women. J Pediatr Gastroenterol Nutr 32:464–470

    Article  CAS  PubMed  Google Scholar 

  • Fitz NF, Cronican AA, Lefterov I, Koldamova R (2013) Comment on "ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models". Science 340:924-c. doi:10.1126/science.1235809

    Article  PubMed  CAS  Google Scholar 

  • Foy C, Passmore A, Vahidassr M, Young I, Lawson J (1999) Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 92:39–45

    Article  CAS  PubMed  Google Scholar 

  • Franceschelli S et al. (2014) Astaxanthin treatment confers protection against oxidative stress in U937 cells stimulated with lipopolysaccharide reducing O2− production

  • Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21:47–59

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa H et al (2012) Tamibarotene: a candidate retinoid drug for Alzheimer’s disease. Biol Pharm Bull 35:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Fung A, Vizcaychipi M, Lloyd D, Wan Y, Ma D (2012) Central nervous system inflammation in disease related conditions: mechanistic prospects. Brain Res 1446:144–155

    Article  CAS  PubMed  Google Scholar 

  • Gabbita SP et al (2012) Early intervention with a small molecule inhibitor for tumor necrosis factor-alpha prevents cognitive deficits in a triple transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 9:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galimberti D, Ghezzi L, Scarpini E (2013a) Immunotherapy against amyloid pathology in Alzheimer’s disease. J Neurol Sci 333:50–54. doi:10.1016/j.jns.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  • Germain P et al (2006) International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:760–772

    Article  PubMed  CAS  Google Scholar 

  • Ghahghaei A, Bathaie S, Kheirkhah H, Bahraminejad E (2013) The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro. Cell Mol Biol Lett 18:328–339

    Article  CAS  PubMed  Google Scholar 

  • Godbout JP et al (2008) Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33:2341–2351

    Article  CAS  PubMed  Google Scholar 

  • Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R, Jack J, Corcoran J (2013) Amyloid β inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor α agonist. Eur J Neurosci 37:1182–1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodman AB (2006) Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J Cell Physiol 209:598–603

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez EG, Banks WA, Kastin AJ (1993) Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47:169–176

    Article  CAS  PubMed  Google Scholar 

  • Hadad N, Levy R (2012) The synergistic anti-inflammatory effects of lycopene, lutein, β-carotene, and carnosic acid combinations via redox-based inhibition of NF-κB signaling. Free Radic Biol Med 53:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Hampel H (2012) Current insights into the pathophysiology of Alzheimer’s disease: selecting targets for early therapeutic intervention. Int Psychogeriatr 24:S10–S17

    Article  PubMed  Google Scholar 

  • Hannestad J, Della Gioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Harrirchian MH et al (2014) The effect of vitamin A supplementation on disease progression, cytokine levels and gene expression in multiple sclerotic patients: study protocol for a randomized controlled trial. Acta medica Iranica 52:94–100

    CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Article  Google Scholar 

  • Heneka MT, O’Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 117:919–947

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18:S210–S212

    Article  PubMed  Google Scholar 

  • Holmes C et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honarvar NM et al (2013a) The effect of vitamin a supplementation on retinoic acid-related orphan receptor γt (RORγt) and interleukin-17 (IL-17) gene expression in avonex-treated multiple sclerotic patients. J Mol Neurosci 51:749–753

    Article  CAS  Google Scholar 

  • Honarvar NM et al (2013b) In vitro effect of human serum and fetal calf serum on CD4+ T cells proliferation in response to myelin oligodendrocyte glycoprotein (MOG) in correlation with RBP/TTR ratio in multiple sclerotic patients. Journal of molecular neuroscience: MN 50:571–576. doi:10.1007/s12031-013-9999-2

    Article  CAS  PubMed  Google Scholar 

  • Horton JW, White DJ, Maass DL, Hybki DP, Haudek S, Giroir B (2001) Antioxidant vitamin therapy alters burn trauma-mediated cardiac NF-κB activation and cardiomyocyte cytokine secretion. J Trauma Acute Care Surg 50:397–408

    Article  CAS  Google Scholar 

  • Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Henry C, Dantzer R, Johnson R, Godbout J (2008) Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29:1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Husson M, Enderlin V, Delacourte A, Ghenimi N, Alfos S, Pallet V, Higueret P (2006) Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol Dis 23:1–10

    Article  CAS  PubMed  Google Scholar 

  • Jaeger LB et al (2009) Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181:7254–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis C et al (2010) Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β. Eur J Neurosci 32:1246–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Jiménez FJ et al (1999) Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer’s disease. Eur J Neurol 6:495–497

    Article  PubMed  Google Scholar 

  • Jung YD et al (2002) Role of P38 MAPK, AP-1, and NF-kappaB in interleukin-1beta-induced IL-8 expression in human vascular smooth muscle cells. Cytokine 18:206–213

    Article  CAS  PubMed  Google Scholar 

  • Kagechika H et al (1997) Inhibition of IL-1-induced IL-6 production by synthetic retinoids. Biochem Biophys Res Commun 231:243–248

    Article  CAS  PubMed  Google Scholar 

  • Kamenetz F et al (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  CAS  PubMed  Google Scholar 

  • Kampmann E, Johann S, Van Neerven S, Beyer C, Mey J (2008) Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. J Neurochem 106:320–332

    Article  CAS  PubMed  Google Scholar 

  • Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179:3724–3733

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Wang B-J, Hsu W-M, Chang M-Y, Liang S-M, Liao Y-F (2013) Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 4:1093–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama S, Ogawa H, Nakamura S (2011) Apricot carotenoids possess potent anti-amyloidogenic activity in vitro. J Agric Food Chem 59:12691–12696

    Article  CAS  PubMed  Google Scholar 

  • Katsuki H et al (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110:707–718

    Article  CAS  PubMed  Google Scholar 

  • Kaulmann A, Bohn T (2014) Carotenoids, inflammation, and oxidative stress—implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res 34:907–929

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Sivakumar V, Dheen S, Ling E (2006) Insulin-like growth factor I and II expression and modulation in amoeboid microglial cells by lipopolysaccharide and retinoic acid. Neuroscience 138:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K et al (2009) Oral administration of synthetic retinoid Am80 (Tamibarotene) decreases brain beta-amyloid peptides in APP23 mice. Biol Pharm Bull 32:1307–1309

    Article  CAS  PubMed  Google Scholar 

  • Kawahara K et al (2013) Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s disease: JAD 42:587–605

    Google Scholar 

  • Khalili M, Hamzeh F (2010) Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iran Biomed J 14:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiko T, Nakagawa K, Satoh A, Tsuduki T, Furukawa K, Arai H, Miyazawa T (2012a) Amyloid beta levels in human red blood cells. PLoS One 7:e49620. doi:10.1371/journal.pone.0049620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiko T, Nakagawa K, Satoh A, Tsuduki T, Furukawa K, Arai H, Miyazawa T (2012b) Amyloid β levels in human red blood cells

  • Kiko T, Nakagawa K, Tsuduki T, Suzuki T, Arai H, Miyazawa T (2011) Significance of lutein in red blood cells of Alzheimer’s disease patients. Journal of Alzheimer’s disease: JAD 28:593–600

    Google Scholar 

  • Kim CH (2010) Retinoic acid, immunity, and inflammation. Vitam Horm 86:83–101

    Article  CAS  Google Scholar 

  • Kim JE, Clark RM, Park Y, Lee J, Fernandez ML (2012) Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutrition research and practice 6:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipp M et al (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. Journal of molecular neuroscience: MN 35:235–243. doi:10.1007/s12031-008-9057-7

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 25:8843–8853. doi:10.1523/jneurosci.2868-05.2005

    Article  CAS  Google Scholar 

  • Kong Y et al (2014) The protective effects of crocetin on abeta(1)(−)(4)(2)-induced toxicity in Ht22 cells. CNS & neurological disorders drug targets 13:1627–1632

    Article  CAS  Google Scholar 

  • Koryakina A, Aeberhard J, Kiefer S, Hamburger M, Küenzi P (2009) Regulation of secretases by all-trans-retinoic acid. FEBS J 276:2645–2655

    Article  CAS  PubMed  Google Scholar 

  • Kotilinek LA et al (2008) Cyclooxygenase-2 inhibition improves amyloid-β-mediated suppression of memory and synaptic plasticity. Brain 131:651–664

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnaraj RN, Kumari SS, Mukhopadhyay SS (2015) Antagonistic molecular interactions of photosynthetic pigments with molecular disease targets: a new approach to treat AD and ALS. J Recept Signal Transduct 1–5

  • Kumar A, Dogra S (2008) Neuropathology and therapeutic management of Alzheimer’s disease—an update. Drugs Future 33:433–446

    Article  CAS  Google Scholar 

  • Kumar A, Singh A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kurz A, Perneczky R (2011a) Novel insights for the treatment of Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 35:373–379. doi:10.1016/j.pnpbp.2010.07.018

    Article  CAS  Google Scholar 

  • LaClair KD, Manaye KF, Lee DL, Allard JS, Savonenko AV, Troncoso JC, Wong PC (2013) Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix S, Rivest S (1998) Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain. J Neurochem 70:452–466

    Article  CAS  PubMed  Google Scholar 

  • Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci Off J Soc Neurosci 19:10923–10930

    CAS  Google Scholar 

  • Landrum JT (2009) Carotenoids: physical, chemical, and biological functions and properties. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

    Article  CAS  PubMed  Google Scholar 

  • Lee H-P et al. (2009a) All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease

  • Lee S-A, Belyaeva OV, Kedishvili NY (2009b) Biochemical characterization of human epidermal retinol dehydrogenase 2. Chem Biol Interact 178:182–187

    Article  CAS  PubMed  Google Scholar 

  • Lerner AJ, Gustaw-Rothenberg K, Smyth S, Casadesus G (2012) Retinoids for treatment of Alzheimer’s disease. Biofactors 38:84–89

    Article  CAS  PubMed  Google Scholar 

  • Li F-J, Shen L, Ji H-F (2011) Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer’s disease: a meta-analysis. Journal of Alzheimer’s disease: JAD 31:253–258

    CAS  Google Scholar 

  • Liaane-Jensen S, Lutnees BF (2008) Structure and properties of carotenoid cations. In: Carotenoids. Springer, pp 155–166

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7. doi:10.1124/jpet.102.035048

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu Z, Hayashi Y, Nakanishi H (2012) Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience 216:133–142. doi:10.1016/j.neuroscience.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  • Lu C-C, Yen G-C (2015) Antioxidative and anti-inflammatory activity of functional foods. Current Opinion in Food Science 2:1–8

    Article  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  PubMed  Google Scholar 

  • Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Mecocci P et al (2002) Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch Neurol 59:794–798

    Article  PubMed  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Draoui M, Bernardini S, Bellincampi L, Reichert U, Cohen P (1996) Regulation by retinoic acid of insulin-degrading enzyme and of a related endoprotease in human neuroblastoma cell lines. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research 7:787–796

    CAS  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  • Min J-y, Min K-b (2014) Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults. Dement Geriatr Cogn Disord 37:246–256

  • Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadeh Honarvar NM et al (2013) The effect of vitamin A supplementation on retinoic acid-related orphan receptor gammat (RORgammat) and interleukin-17 (IL-17) gene expression in Avonex-treated multiple sclerotic patients. Journal of molecular neuroscience: MN 51:749–753. doi:10.1007/s12031-013-0058-9

    Article  PubMed  CAS  Google Scholar 

  • Monczak Y, Trudel M, Lamph WW, Miller WH Jr (1997) Induction of apoptosis without differentiation by retinoic acid in PLB-985 cells requires the activation of both RAR and RXR. Blood 90:3345–3355

    CAS  PubMed  Google Scholar 

  • Moylan S, Maes M, Wray N, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606

    Article  CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  CAS  PubMed  Google Scholar 

  • Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 16:1055–1069

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa K, Kiko T, Miyazawa T, Sookwong P, Tsuduki T, Satoh A, Miyazawa T (2011) Amyloid β-induced erythrocytic damage and its attenuation by carotenoids. FEBS Lett 585:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J Neurochem 120:167–185

    Article  CAS  PubMed  Google Scholar 

  • Nolan JM et al (2015) The impact of supplemental macular carotenoids in Alzheimer’s disease: a randomized clinical trial. J Alzheimers Dis 44:1157–1169. doi:10.3233/jad-142265

    CAS  PubMed  Google Scholar 

  • Nolan JM et al (2014) Macular pigment, visual function, and macular disease among subjects with Alzheimer’s disease: an exploratory study. J Alzheimers Dis 42:1191–1202

    CAS  PubMed  Google Scholar 

  • Nolana JM et al (2015) The impact of supplemental macular carotenoids in Alzheimer’s disease: a randomized clinical trial. Methods 17:18

    Google Scholar 

  • Nozaki Y, Yamagata T, Sugiyama M, Ikoma S, Kinoshita K, Funauchi M (2006) Anti-inflammatory effect of all-trans-retinoic acid in inflammatory arthritis. Clin Immunol 119:272–279

    Article  CAS  PubMed  Google Scholar 

  • Obulesu M, Dowlathabad MR, Bramhachari P (2011) Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 59:535–541

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2004) Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 189:380–392

    Article  CAS  PubMed  Google Scholar 

  • Palozza P et al (2003) Beta-carotene regulates NF-kappaB DNA-binding activity by a redox mechanism in human leukemia and colon adenocarcinoma cells. J Nutr 133:381–388

    CAS  PubMed  Google Scholar 

  • Pereira AA, van Hattum B, Brouwer A (2012) Hepatic retinoid levels in seven fish species (teleosts) from a tropical coastal lagoon receiving effluents from iron-ore mining and processing. Environ Toxicol Chem 31:408–416

    Article  CAS  PubMed  Google Scholar 

  • Pflanzner T et al. (2011) LRP1 mediates bidirectional transcytosis of amyloid-β across the blood-brain barrier. Neurobiology of aging 32:2323. e2321–2323. e2311

  • Polidori MC, Mecocci P (2002) Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. Journal of Alzheimer’s disease: JAD 4:517–522

    CAS  PubMed  Google Scholar 

  • Price AR, Xu G, Siemienski ZB, Smithson LA, Borchelt DR, Golde TE, Felsenstein KM (2013) Comment on "ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models". Science 340:924-d doi:10.1126/science.1234089

  • Qu M et al (2011) Protective effects of lycopene against amyloid β-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 505:286–290

    Article  CAS  PubMed  Google Scholar 

  • R Carratu M, Marasco C, Signorile A, Scuderi C, Steardo L (2012) Are retinoids a promise for Alzheimer’s disease management? Curr Med Chem 19:6119–6125

    Google Scholar 

  • Rafii MS, Aisen PS (2009) Recent developments in Alzheimer’s disease therapeutics. BMC medicine 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Bermudez J (2012) Alzheimer’s disease: critical notes on the history of a medical concept. Arch Med Res 43:595–599. doi:10.1016/j.arcmed.2012.11.008

    Article  PubMed  Google Scholar 

  • Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:369808. doi:10.1155/2012/369808

    PubMed  PubMed Central  Google Scholar 

  • Ricoy UM, Mao P, Manczak M, Reddy PH, Frerking ME (2011) A transgenic mouse model for Alzheimer’s disease has impaired synaptic gain but normal synaptic dynamics. Neurosci Lett 500:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zu Zhu S, Chao CC (1998) Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Mol Brain Res 55:35–44

    Article  CAS  PubMed  Google Scholar 

  • Roth AD, Ramírez G, Alarcón R, Von Bernhardi R (2005) Oligodendrocytes damage in Alzheimer’s disease: beta amyloid toxicity and inflammation. Biol Res 38:381–387

    Article  CAS  PubMed  Google Scholar 

  • Rozovsky I, Finch C, Morgan T (1998) Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19:97–103

    Article  CAS  PubMed  Google Scholar 

  • Saboor-Yaraghi AA et al (2015) The effect of vitamin a supplementation on FoxP3 and TGF-beta Gene expression in Avonex-treated multiple sclerosis patients. Journal of molecular neuroscience: MN 56:608–612. doi:10.1007/s12031-015-0549-y

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva AK, Chopra K (2015) Lycopene abrogates Aβ (1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. The Journal of nutritional biochemistry

  • Saez TE, Pehar M, Vargas M, Barbeito L, Maccioni RB (2004) Astrocytic nitric oxide triggers tau hyperphosphorylation in hippocampal neurons. In vivo 18:275–280

    CAS  PubMed  Google Scholar 

  • Sahin M, Karaüzüm SB, Perry G, Smith MA, Alicigüzel Y (2005) Retinoic acid isomers protect hippocampal neurons from amyloid-β induced neurodegeneration. Neurotox Res 7:243–250

    Article  CAS  PubMed  Google Scholar 

  • Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73:504–517

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Cahú TB, Firmino GO, de Castro CC, Carvalho LB Jr, Bezerra RS, José Filho LL (2012) Shrimp waste extract and astaxanthin: rat alveolar macrophage, oxidative stress and inflammation. J Food Sci 77:H141–H146

    Article  CAS  PubMed  Google Scholar 

  • Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M (2015) Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Current pharmaceutical design

  • Sato M, Shudo K, Hiragun A (1988) Functional studies of newly synthesized benzoic acid derivatives: identification of highly potent retinoid-like activity. J Cell Physiol 135:179–188. doi:10.1002/jcp.1041350205

    Article  CAS  PubMed  Google Scholar 

  • Saurer L, McCullough KC, Summerfield A (2007) In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J Immunol 179:3504–3514

    Article  CAS  PubMed  Google Scholar 

  • Schwaninger M, Sallmann S, Petersen N, Schneider A, Prinz S, Libermann TA, Spranger M (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-kappaB. J Neurochem 73:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Sedjo RL, Ranger-Moore J, Foote J, Craft NE, Alberts DS, Xu M-J, Giuliano AR (2004) Circulating endogenous retinoic acid concentrations among participants enrolled in a randomized placebo-controlled clinical trial of retinyl palmitate. Cancer Epidemiol Biomark Prev 13:1687–1692

    CAS  Google Scholar 

  • Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shudo K, Fukasawa H, Nakagomi M, Yamagata N (2009) Towards retinoid therapy for Alzheimer’s disease. Curr Alzheimer Res 6:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodhi RK, Singh N (2014) Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 120:117–123

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Junghans A, de Boer B, Driomina ES, Briviba K, Sies H (1998) Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett 427:305–308

    Article  CAS  PubMed  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Stalder AK et al (2005) Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 25:11125–11132

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer’s disease brain research. Brain Res Rev 48:234–239. doi:10.1016/j.brainresrev.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  • Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Aβ peptides on vascular smooth muscle cells and for Aβ binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479

    Article  CAS  PubMed  Google Scholar 

  • Sugama S et al (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res 964:288–294

    Article  CAS  PubMed  Google Scholar 

  • Sugaya K et al (1996) Molecular indices of neuronal and glial plasticity in the hippocampal formation in a rodent model of age-induced spatial learning impairment. J Neurosci 16:3427–3443

    CAS  PubMed  Google Scholar 

  • Takasaki J et al (2010) Vitamin A has anti-oligomerization effects on amyloid-β in vitro. Journal of Alzheimer’s disease: JAD 27:271–280

    Google Scholar 

  • Tan Z et al (2007) Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology 68:1902–1908

    Article  CAS  PubMed  Google Scholar 

  • Teismann P et al (2003a) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A 100:5473–5478. doi:10.1073/pnas.0837397100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teismann P et al (2003b) Pathogenic role of glial cells in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 18:121–129. doi:10.1002/mds.10332

    Article  Google Scholar 

  • Terrando N et al (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesseur I et al. (2013) Comment on "ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models". Science 340:924-e doi:10.1126/science.1233937

  • Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    Article  CAS  PubMed  Google Scholar 

  • van Neerven S et al (2010) Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol 229:169–179

    Article  PubMed  CAS  Google Scholar 

  • Veeraraghavalu K et al. (2013) Comment on "ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models". Science 340:924-f doi:10.1126/science.1235505

  • Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10:1677–1694

    Article  CAS  PubMed  Google Scholar 

  • Vukic V et al (2009) Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 34:95–106

    Article  CAS  PubMed  Google Scholar 

  • Wang R et al (2015) All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 290:22532–22542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Shinto L, Connor WE, Quinn JF (2008) Nutritional biomarkers in Alzheimer’s disease: the association between carotenoids, n-3 fatty acids, and dementia severity. Journal of Alzheimer’s disease: JAD 13:31–38

    CAS  PubMed  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of carcinogenesis 5:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen X et al (2015) Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: involvement of the Akt/GSK-3β pathway. Neuroscience 303:558–568

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol 190:446–455

    Article  CAS  PubMed  Google Scholar 

  • Woodall AA, Lee SW-M, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochimica et Biophysica Acta (BBA)-General Subjects 1336:33–42

    Article  CAS  Google Scholar 

  • Xing B, Bachstetter AD, Van Eldik LJ (2011) Microglial p38alpha MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFalpha. Mol Neurodegener 6:84. doi:10.1186/1750-1326-6-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasojima K, McGeer E, McGeer P (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919:115–121

    Article  CAS  PubMed  Google Scholar 

  • Yeum K-J, Aldini G, Russell RM, Krinsky NI (2009) Antioxidant/pro-oxidant actions of carotenoids. In: Carotenoids. Springer, pp 235–268

  • You X et al (2009) Retinoid X receptor-α mediates (R)-flurbiprofen’s effect on the levels of Alzheimer’s β-amyloid. J Neurochem 111:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Gong B, Liu S, Fa M, Ninan I, Staniszewski A, Arancio O (2005) Synaptic fatigue is more pronounced in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 2:137–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-S et al (2014a) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192:206–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2014b) Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS neuroscience & therapeutics 20:119–124

    Article  CAS  Google Scholar 

  • Zhao J et al (2014) Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the retinoid X receptor/retinoic acid receptor pathway. J Biol Chem 289:11282–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance received by Mrs. Margaret Clarke from the School of Medicine, Western Sydney University who kindly edited of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Saedisomeolia.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Honarvar, N., Saedisomeolia, A., Abdolahi, M. et al. Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer’s Disease: a Review of Current Evidence. J Mol Neurosci 61, 289–304 (2017). https://doi.org/10.1007/s12031-016-0857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0857-x

Keywords

Navigation