Skip to main content

Advertisement

Log in

A New Plant Expression System for Producing Pharmaceutical Proteins

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Egelkrout, E., Rajan, V., & Howard, J. A. (2012). Overproduction of recombinant proteins in plants. Plant Science,184, 83–101.

    Article  CAS  PubMed  Google Scholar 

  2. Obembe, O. O., Popoola, J. O., Leelavathi, S., & Reddy, S. V. (2011). Advances in plant molecular farming. Biotechnology Advances,29(2), 210–222.

    Article  PubMed  Google Scholar 

  3. Ma, S., & Wang, A. (2012). Molecular farming in plants: An overview. In A. Wang & S. Ma (Eds.), Molecular farming in plants: Recent advances and future prospects (pp. 1–20). Dordrecht: Springer.

    Google Scholar 

  4. Madeira, L. M., Szeto, T. H., Henquet, M., Raven, N., Runions, J., Huddleston, J., et al. (2016). High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. Plant Biotechnology Journal,14(2), 615–624.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, J., Dolan, M. C., Medrano, G., Cramer, C. L., & Weathers, P. J. (2012). Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnology Advances,30(5), 1171–1184.

    Article  CAS  PubMed  Google Scholar 

  6. Stoger, E., Fischer, R., Moloney, M., & Ma, J. K. (2014). Plant molecular pharming for the treatment of chronic and infectious diseases. Annual Review of Plant Biology,65, 743–768.

    Article  CAS  PubMed  Google Scholar 

  7. Khatodia, S., & Paul Khurana, S. M. (2018). Chapter 5—Genetic engineering for plant transgenesis: Focus to pharmaceuticals. In D. Barh & V. Azevedo (Eds.), Omics technologies and bio-engineering (pp. 71–86). Cambridge: Academic Press.

    Chapter  Google Scholar 

  8. Krenek, P., Samajova, O., Luptovciak, I., Doskocilova, A., Komis, G., & Samaj, J. (2015). Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnology Advances,33(6), 1024–1042.

    Article  CAS  PubMed  Google Scholar 

  9. Łojewska, E., Kowalczyk, T., Olejniczak, S., & Sakowicz, T. (2016). Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expression and Purification,120, 110–117.

    Article  CAS  PubMed  Google Scholar 

  10. Zischewski, J., Sack, M., & Fischer, R. (2016). Overcoming low yields of plant-made antibodies by a protein engineering approach. Biotechnology Journal,11(1), 107–116.

    Article  CAS  PubMed  Google Scholar 

  11. Duwadi, K., Chen, L., Menassa, R., & Dhaubhadel, S. (2015). Identification, characterization and down-regulation of cysteine protease genes in tobacco for use in recombinant protein production. PLoS ONE,10(7), e0130556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jamal, A., Ko, K., Kim, H. S., Choo, Y. K., Joung, H., & Ko, K. (2009). Role of genetic factors and environmental conditions in recombinant protein production for molecular farming. Biotechnology Advances,27(6), 914–923.

    Article  CAS  PubMed  Google Scholar 

  13. Negrouk, V., Eisner, G., Lee, H.-I., Han, K., Taylor, D., & Wong, H. C. (2005). Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Science,169(2), 433–438.

    Article  CAS  Google Scholar 

  14. Bardor, M., Loutelier-Bourhis, C., Paccalet, T., Cosette, P., Fitchette, A. C., Vezina, L. P., et al. (2003). Monoclonal C5–1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glyco-engineering into human-compatible structures. Plant biotechnology journal,1(6), 451–462.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, J. K., Drake, P. M., & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics,4(10), 794–805.

    Article  CAS  PubMed  Google Scholar 

  16. Sathyanarayana, N., Vikas, P., & Rajesha, R. (2008). In vitro clonal propagation of Mucuna pruriens var. utilis and its evaluation of genetic stability through RAPD markers. African Journal of Biotechnology,7(8), 973–980.

    CAS  Google Scholar 

  17. Agbede, J. O. (2006). Characterisation of the leaf meals, protein concentrates and residues from some tropical leguminous plants. Journal of the Science of Food and Agriculture,86(9), 1292–1297.

    Article  CAS  Google Scholar 

  18. Mathews, C. (1998). The introduction and establishment of a new leguminous cover crop, Mucuna bracteata under oil palm in Malaysia. Planter,74(868), 359–368.

    Google Scholar 

  19. Mendham, D. S., Kumaraswamy, S., Balasundaran, M., Sankaran, K. V., Corbeels, M., Grove, T. S., et al. (2004). Legume cover cropping effects on early growth and soil nitrogen supply in eucalypt plantations in South-Western India. Biology and Fertility of Soils,39(5), 375–382.

    Article  Google Scholar 

  20. Chiu, S. B. (2007). Botany, habits and economic uses of Mucuna bracteata DC. ex Kurz. In K. J. Goh & S. B. Chiu (Eds.), Mucuna bracteata: A cover crop and living green manure. Ampang: Majujaya Indah Sdn. Bhd.

    Google Scholar 

  21. Lim, S. S. Y., Chua, K. H., Nölke, G., Spiegel, H., Goh, W. L., Chow, S. C., et al. (2018). Plant-derived chimeric antibodies inhibit the invasion of human fibroblasts by Toxoplasma gondii. PeerJ,6, e5780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arcalis, E., Stadlmann, J., Rademacher, T., Marcel, S., Sack, M., Altmann, F., et al. (2013). Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Molecular Biology,83(1), 105–117.

    Article  CAS  PubMed  Google Scholar 

  23. Mann, D. G. J., Abercrombie, L. L., Rudis, M. R., Millwood, R. J., Dunlap, J. R., & Stewart, C. N. (2012). Very bright orange fluorescent plants: Endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnology,12(1), 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martínez, C. A., Giulietti, A. M., & Rodríguez Talou, J. (2011). Expression of a KDEL-tagged dengue virus protein in cell suspension cultures of Nicotiana tabacum and Morinda citrifolia. Plant Cell, Tissue and Organ Culture (PCTOC),107(1), 91–100.

    Article  CAS  Google Scholar 

  25. Abd Aziz, N., Tan, B. C., Othman, R. Y., & Khalid, N. (2018). Efficient micropropagation protocol and genome size estimation of an important cover crop, Mucuna bracteata DC. ex Kurz. Plant Cell, Tissue and Organ Culture,132(2), 267–278.

    Article  CAS  Google Scholar 

  26. Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., et al. (2013). Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. JoVE (Journal of Visualized Experiments),77, e50521.

    Google Scholar 

  27. Fan, Y., Li, W., Wang, J., Liu, J., Yang, M., Xu, D., et al. (2011). Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds. BMC Biotechnology,11(1), 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sivanandhan, G., Dev, G. K., Theboral, J., Selvaraj, N., Ganapathi, A., & Manickavasagam, M. (2015). Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS ONE,10(4), e0124693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Houdelet, M., Galinski, A., Holland, T., Wenzel, K., Schillberg, S., & Buyel, J. F. (2017). Animal component-free Agrobacterium tumefaciens cultivation media for better GMP-compliance increases biomass yield and pharmaceutical protein expression in Nicotiana benthamiana. Biotechnology Journal,12(4), 1600721.

    Article  CAS  Google Scholar 

  30. Jung, S. K., Lindenmuth, B. E., McDonald, K. A., Hwang, M. S., Bui, M. Q. N., Falk, B. W., et al. (2014). Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves. Biotechnology Progress,30(4), 905–915.

    Article  CAS  PubMed  Google Scholar 

  31. Wroblewski, T., Tomczak, A., & Michelmore, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal,3(2), 259–273.

    Article  CAS  PubMed  Google Scholar 

  32. Wydro, M., Kozubek, E., & Lehmann, P. (2006). Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica-English Edition,53(2), 289.

    Article  CAS  Google Scholar 

  33. King, J. L., Finer, J. J., & McHale, L. K. (2015). Development and optimization of agroinfiltration for soybean. Plant Cell Reports,34(1), 133–140.

    Article  CAS  PubMed  Google Scholar 

  34. Buyel, J., & Fischer, R. (2012). Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnology and Bioengineering,109(10), 2575–2588.

    Article  CAS  PubMed  Google Scholar 

  35. Bashandy, H., Jalkanen, S., & Teeri, T. H. (2015). Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods,11(1), 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sack, M., Rademacher, T., Spiegel, H., Boes, A., Hellwig, S., Drossard, J., et al. (2015). From gene to harvest: Insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnology Journal,13(8), 1094–1105.

    Article  CAS  PubMed  Google Scholar 

  37. Sheludko, Y., Sindarovska, Y., Gerasymenko, I., Bannikova, M., & Kuchuk, N. (2007). Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnology and Bioengineering,96(3), 608–614.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, Y., Li, R., & Qi, M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal,22(6), 543–551.

    Article  CAS  PubMed  Google Scholar 

  39. Bhaskar, P. B., Venkateshwaran, M., Wu, L., Ané, J.-M., & Jiang, J. (2009). Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE,4(6), e5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, K., Huang, X., Wu, M., Wang, Y., Chang, Y., Liu, K., et al. (2014). A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE,9(1), e83556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yasmin, A., & Debener, T. (2010). Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell, Tissue and Organ Culture,102(2), 245–250.

    Article  CAS  Google Scholar 

  42. Zheng, L., Liu, G., Meng, X., Li, Y., & Wang, Y. (2012). A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochemical Genetics,50(9–10), 761–769.

    Article  CAS  PubMed  Google Scholar 

  43. Johansen, L. K., & Carrington, J. C. (2001). Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiology,126(3), 930–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The plant journal,33(5), 949–956.

    Article  CAS  PubMed  Google Scholar 

  45. Donini, M., Lombardi, R., Lonoce, C., Di Carli, M., Marusic, C., Morea, V., et al. (2015). Antibody proteolysis: A common picture emerging from plants. Bioengineered,6(5), 299–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niemer, M., Mehofer, U., Torres Acosta, J. A., Verdianz, M., Henkel, T., Loos, A., et al. (2014). The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: Down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnology Journal,9(4), 493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jutras, P. V., Marusic, C., Lonoce, C., Deflers, C., Goulet, M.-C., Benvenuto, E., et al. (2016). An accessory protease inhibitor to increase the yield and quality of a tumour-targeting mAb in Nicotiana benthamiana leaves. PLoS ONE,11(11), e0167086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hehle, V. K., Paul, M. J., Drake, P. M., Ma, J. K., & van Dolleweerd, C. J. (2011). Antibody degradation in tobacco plants: A predominantly apoplastic process. BMC Biotechnology,11, 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mandal, M. K., Ahvari, H., Schillberg, S., & Schiermeyer, A. (2016). Tackling unwanted proteolysis in plant production hosts used for molecular farming. Frontiers in Plant Science,7, 267.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hehle, V. K., Lombardi, R., van Dolleweerd, C. J., Paul, M. J., Di Micco, P., Morea, V., et al. (2015). Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants. Plant Biotechnology Journal,13(2), 235–245.

    Article  CAS  PubMed  Google Scholar 

  51. Hehle, V. K., Paul, M. J., Roberts, V. A., Dolleweerd, C. J. V., & Ma, J. K. C. (2016). Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. The FASEB Journal,30(4), 1590–1598.

    Article  CAS  PubMed  Google Scholar 

  52. Grosse-Holz, F., Madeira, L., Zahid, M. A., Songer, M., Kourelis, J., Fesenko, M., et al. (2018). Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. Plant Biotechnology Journal,16(10), 1797–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hellens, R., Mullineaux, P., & Klee, H. (2000). Technical focus: A guide to Agrobacterium binary Ti vectors. Trends in Plant Science,5(10), 446–451.

    Article  CAS  PubMed  Google Scholar 

  54. Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus,3(1), 358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zottini, M., Barizza, E., Costa, A., Formentin, E., Ruberti, C., Carimi, F., et al. (2008). Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Reports,27(5), 845–853.

    Article  CAS  PubMed  Google Scholar 

  56. Kim, Y. G., Sharmin, S. A., Alam, I., Kim, K. H., Kwon, S. Y., Sohn, J. H., et al. (2013). Agrobacterium-mediated transformation of reed (Phragmites communis Trinius) using mature seed-derived calli. Gcb Bioenergy,5(1), 73–80.

    Article  CAS  Google Scholar 

  57. Chetty, V., Ceballos, N., Garcia, D., Narváez-Vásquez, J., Lopez, W., & Orozco-Cárdenas, M. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports,32(2), 239–247.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, X., Equi, R., Baxter, H., Berk, K., Han, J., Agarwal, S., et al. (2010). A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnology for Biofuels,3(1), 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pruss, G. J., Nester, E. W., & Vance, V. (2008). Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Molecular Plant-Microbe Interactions,21(12), 1528–1538.

    Article  CAS  PubMed  Google Scholar 

  60. Gohlke, J., & Deeken, R. (2014). Plant responses to Agrobacterium tumefaciens and crown gall development. Frontiers in Plant Science,5, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khanna, H. K., Paul, J.-Y., Harding, R. M., Dickman, M. B., & Dale, J. L. (2007). Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Molecular Plant-Microbe Interactions,20(9), 1048–1054.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, W.-J., Dewey, R. E., Boss, W., Phillippy, B. Q., & Qu, R. (2013). Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology,81(3), 273–286.

    Article  CAS  PubMed  Google Scholar 

  63. Pierpoint, W. S. (2004). The extraction of enzymes from plant tissues rich in phenolic compounds. In Protein purification protocols (pp. 65–74). Berlin: Springer.

  64. Charmont, S., Jamet, E., Pont-Lezica, R., & Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: Improved recovery following removal of phenolic compounds. Phytochemistry,66(4), 453–461.

    Article  CAS  PubMed  Google Scholar 

  65. Yao, Y., Yang, Y. W., & Liu, J. Y. (2006). An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis,27(22), 4559–4569.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, X., Li, X., Deng, X., Han, H., Shi, W., & Li, Y. (2007). A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis,28(21), 3976–3987.

    Article  CAS  PubMed  Google Scholar 

  67. Brown, R. B., & Audet, J. (2008). Current techniques for single-cell lysis. Journal of the Royal Society Interface,5(suppl_2), S131–S138.

    Article  CAS  PubMed Central  Google Scholar 

  68. Vagenende, V., Yap, M. G., & Trout, B. L. (2009). Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry,48(46), 11084–11096.

    Article  CAS  PubMed  Google Scholar 

  69. Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J., Munigunti, R. K., White, E. L., et al. (2015). Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant biotechnology journal,13(8), 1180–1190.

    Article  CAS  PubMed  Google Scholar 

  70. Pillay, P., Kunert, K. J., van Wyk, S., Makgopa, M. E., Cullis, C. A., & Vorster, B. J. (2016). Agroinfiltration contributes to VP1 recombinant protein degradation. Bioengineered,7(6), 459–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melnik, S., Neumann, A. C., Karongo, R., Dirndorfer, S., Stübler, M., Ibl, V., et al. (2018). Cloning and plant-based production of antibody MC 10E7 for a lateral flow immunoassay to detect [4-arginine] microcystin in freshwater. Plant biotechnology Journal,16(1), 27–38.

    Article  CAS  PubMed  Google Scholar 

  72. Teh, A. Y. H., Maresch, D., Klein, K., & Ma, J. K. C. (2014). Characterization of VRC 01, a potent and broadly neutralizing anti-HIV mAb, produced in transiently and stably transformed tobacco. Plant Biotechnology Journal,12(3), 300–311.

    Article  CAS  PubMed  Google Scholar 

  73. Heitzer, M., & Zschoernig, B. (2007). Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. BioTechniques,43(3), 324–332.

    Article  CAS  PubMed  Google Scholar 

  74. Webster, D. E., & Thomas, M. C. (2012). Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnology Advances,30(2), 410–418.

    Article  CAS  PubMed  Google Scholar 

  75. Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., & Michaud, D. (2008). Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnology Journal,6(7), 633–648.

    Article  CAS  PubMed  Google Scholar 

  76. Gao, S. X., Zhang, Y., Stansberry-Perkins, K., Buko, A., Bai, S., Nguyen, V., et al. (2011). Fragmentation of a highly purified monoclonal antibody attributed to residual CHO cell protease activity. Biotechnology and Bioengineering,108(4), 977–982.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University of Malaya PPP Grant (Grant No: PG254-2016A) and High Impact Research Programme of University of Malaya, Malaysia (UM.C/625/1/HIR/MOHE/SCI/18).

Author information

Authors and Affiliations

Authors

Contributions

NAA designed the experiments, conducted the experiments and analyzed data; NAA, BCT, NAR, RYO, NK conceived the idea and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rofina Yasmin Othman or Norzulaani Khalid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Aziz, N., Tan, B.C., Rejab, N.A. et al. A New Plant Expression System for Producing Pharmaceutical Proteins. Mol Biotechnol 62, 240–251 (2020). https://doi.org/10.1007/s12033-020-00242-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00242-2

Keywords

Navigation