Skip to main content

Advertisement

Log in

Proliferative Glioblastoma Cancer Cells Exhibit Persisting Temporal Control of Metabolism and Display Differential Temporal Drug Susceptibility in Chemotherapy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Chokα:

Choline kinase α

CTP:

Phosphoethanolamine cytidylyltransferase 2 (Pcyt-2)

CCG:

Clock-control gene

GPL:

Glycerophospholipid

DAG:

Diacylglycerol

DEX:

Dexamethasone

LPLAT:

Lysophospholipid acyl transferase

PC:

Phosphatidylcholine and

PE:

Phosphatidylethanolamine

PAP:

Phosphatidate phosphohydrolase

ROS:

Reactive oxygen species

ICC:

Immunocytochemistry

References

  1. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    CAS  PubMed  Google Scholar 

  2. Nagoshi E, Brown SA, Dibner C, Kornmann B, Schibler U (2005) Circadian gene expression in cultured cells. Methods Enzymol 393:543–557

    CAS  PubMed  Google Scholar 

  3. Acosta-Rodríguez VA, Márquez S, Salvador GA, Pasquaré SJ, Gorné LD, Garbarino-Pico E, Giusto NM, Guido ME (2013) Daily rhythms of glycerophospholipid synthesis in fibroblast cultures involve differential enzyme contributions. J Lipid Res 54(7):1798–1811

    PubMed  PubMed Central  Google Scholar 

  4. Gorné LD, Acosta-Rodríguez VA, Pasquaré SJ, Salvador GA, Giusto NM, Guido ME (2015) The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes. Chronobiol Int 32(1):11–26

    PubMed  Google Scholar 

  5. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–62

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lahti T, Merikanto I, Partonen T (2012) Circadian clock disruptions and the risk of cancer. Ann Med 44(8):847–853

    CAS  PubMed  Google Scholar 

  7. Gooley JJ, Chua EC-P (2014) Diurnal regulation of lipid metabolism and applications of circadian Lipidomics. J Genet Genom 41(5):231–250

    CAS  Google Scholar 

  8. Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  9. Takahashi JS, Hong H-K, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125–137

    CAS  PubMed  Google Scholar 

  11. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bray MS, Young ME (2011) Regulation of fatty acid metabolism by cell autonomous circadian clocks: time to fatten up on information? J Biol Chem 286(14):11883–11889

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109(14):5541–5546

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469(7331):554–558

    PubMed  PubMed Central  Google Scholar 

  16. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    PubMed  PubMed Central  Google Scholar 

  17. Hermansson M, Hokynar K, Somerharju P (2011) Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 50(3):240–257

    CAS  PubMed  Google Scholar 

  18. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222(1):193–214

    CAS  PubMed  Google Scholar 

  19. Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T (2009) Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res 50(Suppl):S46–S51

    PubMed  PubMed Central  Google Scholar 

  20. Hishikawa D, Hashidate T, Shimizu T, Shindou H (2014) Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 55(5):799–807

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49(6):1187–1194

    CAS  PubMed  Google Scholar 

  22. Araki W, Wurtman RJ (1998) How is membrane phospholipid biosynthesis controlled in neural tissues? J Neurosci Res 51(6):667–674

    CAS  PubMed  Google Scholar 

  23. Kent C (2005) Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta 1733(1):53–66

    CAS  PubMed  Google Scholar 

  24. Marcucci H, Paoletti L, Jackowski S, Banchio C (2010) Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem 285(33):25382–25393

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43(3):266–281

    CAS  PubMed  Google Scholar 

  26. Wu G, Vance DE (2010) Choline kinase and its function. Biochem Cell Biol 88(4):559–564

    CAS  PubMed  Google Scholar 

  27. Gréchez-Cassiau A, Feillet C, Guérin S, Delaunay F (2015) The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis. Chronobiol Int 32(6):774–784

    PubMed  Google Scholar 

  28. Pavlovic Z, Bakovic M (2013) Regulation of phosphatidylethanolamine homeostasis—the critical role of CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Int J Mol Sci 14(2):2529–2550

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guido ME, Pico EG, Caputto BL (2001) Circadian regulation of phospholipid metabolism in retinal photoreceptors and ganglion cells. J Neurochem 76(3):835–845

    CAS  PubMed  Google Scholar 

  30. Garbarino-Pico E, Carpentieri AR, Castagnet PI, Pasquaré SJ, Giusto NM, Caputto BL, Guido ME (2004) Synthesis of retinal ganglion cell phospholipids is under control of an endogenous circadian clock: Daily variations in phospholipid-synthesizing enzyme activities. J Neurosci Res 76(5):642–652

    CAS  PubMed  Google Scholar 

  31. Garbarino-Pico E, Valdez DJ, Contín MA, Pasquaré SJ, Castagnet PI, Giusto NM, Caputto BL, Guido ME (2005) Rhythms of glycerophospholipid synthesis in retinal inner nuclear layer cells. Neurochem Int 47(4):260–270

    CAS  PubMed  Google Scholar 

  32. Marquez S, Crespo P, Carlini V, Garbarino-Pico E, Baler R, Caputto BL, Guido ME (2004) The metabolism of phospholipids oscillates rhythmically in cultures of fibroblasts and is regulated by the clock protein PERIOD 1. FASEB J 18:519–521

    CAS  PubMed  Google Scholar 

  33. Fu L, Kettner NM (2013) The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci 119:221–282

    PubMed  PubMed Central  Google Scholar 

  34. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol, 10(20):1291–1294.

    CAS  PubMed  Google Scholar 

  35. Ray S, Reddy AB (2016) Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: dispelling the darkness. Bioessays 38(4):394–405

    PubMed  PubMed Central  Google Scholar 

  36. Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch K-F, Labrecque N, Cermakian N (2017) Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 15:13

    PubMed  PubMed Central  Google Scholar 

  37. Brown SA (2016) Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol Metab 27(6):415–426

    CAS  PubMed  Google Scholar 

  38. Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes Metab 17(0 1):6–11

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhanfeng N, Yanhui L, Zhou F, Shaocai H, Guangxing L, Hechun X (2015) Circadian genes Per1 and Per2 increase radiosensitivity of glioma in vivo. Oncotarget 6(12):9951–9958

    PubMed  PubMed Central  Google Scholar 

  40. Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG (2000) Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 39(4):315–391

    CAS  PubMed  Google Scholar 

  41. Brindley DN (2004) Lipid phosphate phosphatases and related proteins: Signaling functions in development, cell division, and cancer. J Cell Biochem 92(5):900–912

    CAS  PubMed  Google Scholar 

  42. Pasquaré SJ, Salvador GA, Giusto NM (2004) Phospholipase D and phosphatidate phosphohydrolase activities in rat cerebellum during aging. Lipids 39(6):553–560

    PubMed  Google Scholar 

  43. Kok BPC, Venkatraman G, Capatos D, Brindley DN (2012) Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 112(10):5121–5146

    CAS  PubMed  Google Scholar 

  44. Pascual F, Carman GM (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta 1831(3):514–522

    CAS  PubMed  Google Scholar 

  45. Rodríguez Diez G, Sánchez Campos S, Giusto NM, Salvador GA (2013) Specific roles for group V secretory PLA2 in retinal iron-induced oxidative stress. Implications for age-related macular degeneration. Exp Eye Res 113:172–181

    PubMed  Google Scholar 

  46. Sánchez Campos S, Rodríguez Diez G, Oresti GM, Salvador GA (2015) Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS One 10(6):e0130726

    PubMed  PubMed Central  Google Scholar 

  47. Fisher AB (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 617:68–83

    CAS  PubMed  Google Scholar 

  48. Putker M, Crosby P, Feeney KA, Hoyle NP, Costa ASH, Gaude E, Frezza C, O'Neill JS (2018) Mammalian circadian period, but not phase and amplitude, is robust against redox and metabolic perturbations. Antioxid Redox Signal 28(7):507–520

    CAS  Google Scholar 

  49. Zhu B, Zhang Q, Pan Y, Mace EM, York B, Antoulas AC, Dacso CC, O’Malley BW (2017) A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms. Cell Metab 25(6):1305–1319.e1309

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Slat EA, Sponagel J, Marpegan L, Simon T, Kfoury N, Kim A, Binz A, Herzog ED et al (2017) Cell-intrinsic, Bmal1-dependent circadian regulation of temozolomide sensitivity in glioblastoma. J Biol Rhythm 32(2):121–129

    CAS  Google Scholar 

  51. Vriend J, Reiter RJ (2015) The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol 401:213–220

    CAS  PubMed  Google Scholar 

  52. Portal MM, Ferrero GO, Caputto BL (2006) N-terminal c-Fos tyrosine phosphorylation regulates c-Fos//ER association and c-Fos-dependent phospholipid synthesis activation. Oncogene 26(24):3551–3558

    PubMed  Google Scholar 

  53. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    CAS  PubMed  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    CAS  PubMed  Google Scholar 

  55. Fine JB, Sprecher H (1982) Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates. J Lipid Res 23(4):660–663

    CAS  PubMed  Google Scholar 

  56. Castagnet PI, Giusto NM (2002) Effect of light and protein phosphorylation on photoreceptor rod outer segment acyltransferase activity. Arch Biochem Biophys 403(1):83–91

    CAS  PubMed  Google Scholar 

  57. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  58. Pasquare de Garcia SJ, Giusto NM (1986) Phosphatidate phosphatase activity in isolated rod outer segment from bovine retina. Biochim Biophys Acta 875(2):195–202

    CAS  PubMed  Google Scholar 

  59. Pasquare SJ, Giusto NM (1993) Differential properties of phosphatidate phosphohydrolase and diacylglyceride lipase activities in retinal subcellular fractions and rod outer segments. Comp Biochem Physiol B 104(1):141–148

    CAS  PubMed  Google Scholar 

  60. Giusto NM, Bazan NG (1979) Phospholipids and acylglycerols biosynthesis and 14CO2 production from [14C]glycerol in the bovine retina: The effects of incubation time, oxygen and glucose. Exp Eye Res 29(2):155–168

    CAS  PubMed  Google Scholar 

  61. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. In: Armstrong D (ed) Advanced protocols in oxidative stress II. Humana Press, Totowa, NJ, pp. 57–72

    Google Scholar 

  62. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  63. Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62–62

    PubMed  PubMed Central  Google Scholar 

  64. Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB (2007) Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 13(5):745–755

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Morera LP, Díaz NM, Guido ME (2016) Horizontal cells expressing melanopsin x are novel photoreceptors in the avian inner retina. Proc Natl Acad Sci U S A 113(46):13215–13220

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vlachostergios PJ, Hatzidaki E, Stathakis NE, Koukoulis GK, Papandreou CN (2013) Bortezomib downregulates MGMT expression in T98G glioblastoma cells. Cell Mol Neurobiol 33(3):313–318

    CAS  PubMed  Google Scholar 

  68. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142

    Google Scholar 

  69. Thaben PF, Westermark PO (2014) Detecting rhythms in time series with RAIN. J Biol Rhythm 29(6):391–400

    Google Scholar 

  70. Johnson PCD (2014) Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol Evol 5(9):944–946

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mrs. Susana Deza and Gabriela Schanner for their excellent technical support and to Dr. Laura Allende for the gift of the PX459-plasmid.

Funding

This work has been supported by Agencia Nacional de Promoción Científica y Técnica (FONCyT, PICT 2010 No. 647 and PICT 2013 No. 021), Consejo Nacional de Investigaciones Científicas y Tecnológicas de la República Argentina (CONICET) (PIP 2014), Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SeCyT-UNC), and John Simon Guggenheim Memorial Foundation for Latinoamérica and Caribe (2009) in Natural Sciences.

Author information

Authors and Affiliations

Authors

Contributions

LSA, PMW, MEG designed research; LSA, PMW, VG, GAS, SJP performed research; MEG, SJP, GAS contribute new reagents/analytic tools; LSA, PMW, LDG, GAS, SJP, MEG analyzed data; MEG wrote; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mario E. Guido.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 16.2 kb)

Supplementary Fig.1

Flow cytometry of cultures of T98G cells. Cells kept in serum-free DMEM (arrest, a, left panel) or in the presence of serum (proliferation, b, right panel) were synchronized with a shock of 100 nM DEX for 20 min and collected at different times from 0 to 48 h. Percentages of T98G cells in G0/G1 (black) and S + G2/M (gray) cell cycle phases are plotted. Cells were collected at 4–8-h intervals after DEX synchronization and analyzed by flow cytometry with propidium iodide staining as described in “Materials and Methods.” Cells kept in the presence of serum (proliferation, c, bottom panel) were transfected with PX459-Bmal1 plasmid, synchronized with a shock of 100 nM DEX for 20 min and collected at 24 h. Transfected cells exhibited a higher percentage in G0/G1 phases (77%) than in controls (61%). See text for further details. b Temporal variations in clock genes Per1and Rev-erbα mRNAs in T98G cell cultures. Cells were kept in serum-free DMEM (arrest, a, left panels) or in the presence of serum (proliferation, b, right panels) and synchronized with DEX (100 nM) for 20 min and collected at different times. Per1 (a, b) and Rev-erbα (c, d) mRNA levels were assessed by RT-qPCR with RNA extracted from cells collected at different times during 48 h after DEX treatment at time 0; values were normalized according to the expression of the housekeeping gene TBP. A significant adjustment to a periodic function was obtained, illustrated by means of dashed lines (p < 0.05). The results are mean ± SEM (triplicate samples from three independent experiments, n = 3–5/time). See text and Table 1 for further details on statistical analysis and period determination. (PNG 302 kb)

High-resolution image (TIF 13083 kb)

Supplemenatry Fig. 2

Relative levels of GLP endogenous content in proliferative T98G cells. Endogenous levels of PC (top) and PE content (middle) and the PC/PE ratio (bottom panel) in DEX synchronized T98G cells kept under proliferation in the presence of serum. Cells were synchronized with dexamethasone (DEX, 100 nM) for 20 min and collected at different times from 0 to 36 h. Lipids extracted and separated by TLC as described in “Materials and Methods.” The COSINOR revealed a significant time effect of for PE content and the PC/PE ratio with a period of 24 h for both parameters (p ≤ 0.03). The results are mean ± SEM (triplicate samples from three independent experiments, n = 3–6/time). See text and Table 1 for further details on statistical analysis and period determination. (PNG 240 kb)

High-resolution image (TIF 16501 kb)

Supplementary Fig. 3

Rhythms of LPLAT enzymatic activity in T98G cell cultures. Cells kept in serum-free DMEM (arrest, a, left panels) or in the presence of serum (proliferation, b, right panels) and synchronized with DEX (100 nM) for 20 min and collected at different times. LPLAT activity was determined in cell homogenates and measured as the incorporation of [3H]-oleate into lysophosphatidate (LPA) (a, d), lysophosphatidylcholine (LPC) (b, e), and lysophosphatidylethanolamine (LPE) (c, f). LPLAT activity exhibited significant temporal changes only for LPE (p ≤ 0.02 by COSINOR). Results are the mean ± SEM of two independent experiments (n = 4/group). See text for further details and Table 1 for the statistical analysis. (PNG 436 kb)

High-resolution image (TIF 6983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, P.M., Sosa Alderete, L.G., Gorné, L.D. et al. Proliferative Glioblastoma Cancer Cells Exhibit Persisting Temporal Control of Metabolism and Display Differential Temporal Drug Susceptibility in Chemotherapy. Mol Neurobiol 56, 1276–1292 (2019). https://doi.org/10.1007/s12035-018-1152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1152-3

Keywords

Navigation