Skip to main content
Log in

Collective motion: Influence of local behavioural interactions among individuals

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Fascinating patterns are displayed in nature due to the collective coherent motion of many living organisms. The origin of collective behaviours is diverse as the group members benefit in various ways: large resources of food, mating choices, nesting, and protection from predators, to name a few. It is still not well understood how complex behaviours emerge from a collective group that are otherwise not displayed at the level of solitary individuals. In recent years, along with field studies, numerous theoretical approaches have been developed to obtain insights into the mechanisms of aggregations and the collective decision-making processes. This brief review focuses on the self-propelled particle models, which have played a significant role in deciphering the underlying dynamics of collective motion in various organisms. Here, we discuss how local behavioural interactions and coordinations among the individual members give rise to complex collective behaviours. We consider the examples of collective motion in the schooling of fishes, flocking of birds, and swarming of prey, and address the emergence of a variety of patterns, a transition from disorder to ordered motion, and survival chances of prey group when under predator attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Albert R, Jeong H and Barabási A-L 1999 Diameter of the world-wide web. Nature 401 130–131

    Article  CAS  Google Scholar 

  • Ananthakrishna G and De R 2006 Dynamics of stick-slip: Some universal and not so universal features. Lect. Notes Phys. 705 423–457

  • Angelani L 2012 Collective predation and escape strategies. Phys. Rev. Lett. 109 118104

    Article  PubMed  CAS  Google Scholar 

  • Aoki I 1982 A simulation study on the schooling mechanism in fish. Bull. Japan. Soc. Sci. Fish 48 1081–1088

    Article  Google Scholar 

  • Arboleda-Estudillo Y, Krieg M, Stühmer J, et al. 2010 Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20 161–169

    Article  CAS  PubMed  Google Scholar 

  • Baggio JA, Salau K, Janssen MA, Schoon ML and Bodin Ö 2011 Landscape connectivity and predator–prey population dynamics. Landscape Ecol. 26 33–45

    Article  Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, et al. 2008 Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 105 1232–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp G 2003 Group-size effects on vigilance: a search for mechanisms. Behav. Processes 63 111–121

    Article  Google Scholar 

  • Benson AR, Gleich DF and Leskovec J 2016 Higher-order organization of complex networks. Science 353 163–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya K and Vicsek T 2010 Collective decision making in cohesive flocks. New J. Phys. 12 093019

    Article  Google Scholar 

  • Bonato A and Nowakowski RJ 2011 The game of cops and robbers on graphs (American Mathematical Society)

  • Breder Jr C 1959 Studies on social grouping in fishes. Bull. Am. Mus. Nat. Hist. 117 393–482

    Google Scholar 

  • Buhl J, Sumpter DJ, Couzin ID, et al. 2006 From disorder to order in marching locusts. Science 312 1402–1406

    Article  CAS  PubMed  Google Scholar 

  • Camperi M, Cavagna A, Giardina I, Parisi G and Silvestri E 2012 Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus 2 715–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Caro T 2005 Antipredator defenses in birds and mammals (University of Chicago Press)

  • Cavagna A, Cimarelli A, Giardina I, et al. 2010 Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107 11865–11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavagna A, Giardina I and Grigera TS 2018 The physics of flocking: Correlation as a compass from experiments to theory. Phys. Rep. 728 1–62

    Article  Google Scholar 

  • Chakraborty D, Bhunia S and De R 2020 Survival chances of a prey swarm: how the cooperative interaction range affects the outcome. Sci. Rep. 10 8362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y and Kolokolnikov T 2014 A minimal model of predator–swarm interactions. J. R. Soc. Interface 11 20131208

    Article  PubMed  PubMed Central  Google Scholar 

  • Couzin ID and Franks NR 2003 Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. B Biol. Sci. 270 139–146

    Article  CAS  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD and Franks NR 2002 Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218 1–11

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR and Levin SA 2005 Effective leadership and decision-making in animal groups on the move. Nature 433 513–516

    Article  CAS  PubMed  Google Scholar 

  • Czirók A, Ben-Jacob E, Cohen I and Vicsek T 1996 Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54 1791

    Article  Google Scholar 

  • De PS and De R 2019 Stick-slip dynamics of migrating cells on viscoelastic substrates. Phys. Rev. E 100 012409

    Article  CAS  PubMed  Google Scholar 

  • De PS and De R 2021 Does cellular adaptation to force loading rate determine the biphasic vs monotonic response of actin retrograde flow with substrate rigidity? bioRxiv https://doi.org/10.1101/2021.04.23.441062

  • De R and De PS 2022 A brief overview on mechanosensing and stick-slip motion at the leading edge of migrating cells. Indian J. Phys. https://doi.org/10.1007/s12648-022-02297-0

  • Deseigne J, Dauchot O and Chaté H 2010 Collective motion of vibrated polar disks. Phys. Rev. Lett. 105 098001

    Article  PubMed  CAS  Google Scholar 

  • Domenici P and Batty RS 1997 Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128 29–38

    Article  Google Scholar 

  • Domenici P, Blagburn JM and Bacon J. P 2011 Animal escapology i: theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214 2463–2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Edut S and Eilam D 2004 Protean behavior under barn-owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behav. Brain Res. 155 207–216

    Article  PubMed  Google Scholar 

  • Elgar MA 1989 Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol. Rev. Camb. Philos. Soc. 64 13–33

    Article  CAS  PubMed  Google Scholar 

  • Elgeti J, Winkler RG and Gompper G 2015 Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys. 78 056601

    Article  CAS  PubMed  Google Scholar 

  • Friedl P and Gilmour D 2009 Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10 445–457

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Havlin S, Xu X and Stanley HE 2011 Angle restriction enhances synchronization of self-propelled objects. Phys. Rev. E 84 046115

    Article  CAS  Google Scholar 

  • Hamilton WD 1971 Geometry for the selfish herd. J. Theor. Biol. 31 295–311

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y 2010 Spatiotemporal dynamics of skeins of wild geese. Europhys. Lett. 89 48004

    Article  CAS  Google Scholar 

  • Hayward MW and Kerley GI 2005 Prey preferences of the lion (Panthera leo). J. Zool. 267 309–322

    Article  Google Scholar 

  • Hemelrijk CK and Hildenbrandt H 2008 Self-organized shape and frontal density of fish schools. Ethology 114 245–254

    Article  Google Scholar 

  • Hemelrijk CK and Kunz H 2005 Density distribution and size sorting in fish schools: an individual-based model. Behav. Ecol. 16 178–187

    Article  Google Scholar 

  • Heppner F 1990 A stochastic nonlinear model for coordinated bird flocks; in The ubiquity of chaos (American Association for the Advancement of Science)

  • Humphries D and Driver P 1970 Protean defence by prey animals. Oecologia 5 285–302

    Article  CAS  PubMed  Google Scholar 

  • Huth A and Wissel C 1992 The simulation of the movement of fish schools. J. Theor. Biol. 156 365–385

    Article  Google Scholar 

  • Kamimura A and Ohira T 2010 Group chase and escape. New J. Phys. 12 053013

    Article  Google Scholar 

  • Keys GC and Dugatkin LA 1990 Flock size and position effects on vigilance, aggression, and prey capture in the european starling. Condor 92 151–159

    Article  Google Scholar 

  • Kumar V and De R 2021 Efficient flocking: metric versus topological interactions. R. Soc. Open Sci. 8 58

    Article  Google Scholar 

  • McKenzie HW, Merrill EH, Spiteri RJ and Lewis MA 2012 How linear features alter predator movement and the functional response. Interface Focus 2 205–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Moussaïd M, Helbing D and Theraulaz G 2011 How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108 6884–6888

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay D and De R 2019 Aggregation dynamics of active cells on non-adhesive substrate. Phys. Biol. 16 046006

    PubMed  Google Scholar 

  • Mukhopadhyay D and De R 2022 Growth kinetics and power laws indicate distinct mechanisms of cell-cell interactions in the aggregation process. Biophys. J. 121 481–490

    Article  CAS  PubMed  Google Scholar 

  • Nursall J 1973 Some behavioral interactions of spottail shiners (Notropis hudsonius), yellow perch (Perca flavescens), and northern pike (Esox lucius). J. Fish. Res. Board Can. 30 1161–1178

    Article  Google Scholar 

  • Olson RS, Hintze A, Dyer FC, Knoester DB and Adami C 2013 Predator confusion is sufficient to evolve swarming behaviour. J. R. Soc. Interface 10 20130305

    Article  PubMed  PubMed Central  Google Scholar 

  • Oshanin G, Vasilyev O, Krapivsky P and Klafter J 2009 Survival of an evasive prey. Proc. Natl. Acad. Sci. USA 106 13696–13701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrish JK and Edelstein-Keshet L 1999 Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284 99–101

    Article  CAS  PubMed  Google Scholar 

  • Parrish JK, Viscido SV and Grunbaum D 2002 Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202 296–305

    Article  PubMed  Google Scholar 

  • Partridge BL 1982 The structure and function of fish schools. Sci. Am. 246 114–123

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan S, De R and Panigrahi PK 2020 Survival probability of a lazy prey on lattices and complex networks. Eur. Phys. J. E 43 1–9

    Article  CAS  Google Scholar 

  • Pavlov D and Kasumyan A 2000 Patterns and mechanisms of schooling behavior in fish: a review. J. Ichthyol. 40 S163

    Google Scholar 

  • Peruani F, Schimansky-Geier L and Baer M 2010 Cluster dynamics and cluster size distributions in systems of self-propelled particles. Eur. Phys. J. Spec. Top. 191 173–185

    Article  Google Scholar 

  • Pitcher TJ and Wyche CJ 1983 Predator-avoidance behaviours of sand-eel schools: why schools seldom split; in Predators and prey in fishes (Springer) pp. 193–204

  • Potts WK 1984 The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309 344–345

    Article  Google Scholar 

  • Rainolds CW 1987 Flocks, herds and schools: A distributed behaviour model. Comp. Graphics 21. https://doi.org/10.1145/37402.37406

  • Reynolds CW 1987 Flocks, herds and schools: A distributed behavioral model. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques pp. 25–34

  • Salau K, Schoon ML, Baggio JA and Janssen MA 2012 Varying effects of connectivity and dispersal on interacting species dynamics. Ecol. Model. 242 81–91

    Article  Google Scholar 

  • Shang Y and Bouffanais R 2014 Influence of the number of topologically interacting neighbors on swarm dynamics. Sci. Rep. 4 1–7

    Google Scholar 

  • Shaw E 1970 Schooling in fishes: Critique and review; in Development and evolution of behavior (eds) (Aronson LR, Tobach E, Lehrman DS and Rosenblatt JS) (Freeman) 452–480

  • Sokolov A, Aranson IS, Kessler JO and Goldstein RE 2007 Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98 158102

    Article  PubMed  CAS  Google Scholar 

  • Strogatz SH 2001 Exploring complex networks. Nature 410 268–276

    Article  CAS  PubMed  Google Scholar 

  • Sumpter DJ 2010 Collective animal behavior (Princeton University Press)

  • Toner J, Tu Y and Ramaswamy S 2005 Hydrodynamics and phases of flocks. Ann. Phys. 318 170–244

    Article  CAS  Google Scholar 

  • Vásárhelyi G, Virágh C, Somorjai G, et al. 2018 Optimized flocking of autonomous drones in confined environments. Sci. Robot. 3 https://doi.org/10.1126/scirobotics.aat3536

  • Vicsek T and Zafeiris A 2012 Collective motion. Phys. Rep. 517 71–140

    Article  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 1226

    Article  CAS  PubMed  Google Scholar 

  • Weng T, Yang H, Gu C, et al. 2019 Predator-prey games on complex networks. Commun. Nonlinear Sci. Numer. Simul. 79 104911

    Article  Google Scholar 

  • Zhang H-P, Be’er A, Florin E-L and Swinney HL 2010 Collective motion and density fluctuations in bacterial colonies. Proc. Natl. Acad. Sci. USA 107 13626–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhdankin V and Sprott J 2010 Simple predator-prey swarming model. Phys. Rev. E 82 056209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from SERB, Grant No. SR/FTP/PS-105/2013, DST, India. DC acknowledges DST INSPIRE Fellowship for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumi De.

Additional information

Communicated by Mohit Kumar Jolly.

Corresponding editor: Mohit Kumar Jolly

This article is part of the Topical Collection: Emergent dynamics of biological networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, R., Chakraborty, D. Collective motion: Influence of local behavioural interactions among individuals. J Biosci 47, 48 (2022). https://doi.org/10.1007/s12038-022-00277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-022-00277-4

Keywords

Navigation