Skip to main content

Advertisement

Log in

Black carbon aerosols over a semi-arid rain shadow location in Peninsular India: Temporal variability and sources

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Continuous measurements of absorbing carbonaceous aerosol termed as black carbon (BC) have been carried out during April 2017 to March 2018 over Solapur, a semi-arid, rain shadow location in Peninsular India using a multi-wavelength Aethalometer (AE-33). Statistically significant higher values of BC were observed during the dry period (December–May, mean BC 4.3±1.2 µg m–3) as compared to the wet period (June–October, mean BC 1.0 ± 0.15 µg m–3). Hourly variation depicted an almost similar pattern in both wet and dry periods with a dominant morning peak followed by afternoon low and then a heightened plateau during the evening to midnight hours. The absorbing Angstrom exponent (AAE) value was 1.36 ± 0.16 and 1.10 ± 0.22, respectively, during dry and wet periods with an annual mean of 1.22 ± 0.23. The source apportionment of BC using the Aethalometer model depicts the dominance of fossil fuel burning throughout the year especially high during the wet period (89±11% to total BC) whereas biomass burning contributed significantly during the dry period (30±14% to total BC). The observed temporal variation of BC was mainly due to the varying strength of BC emission sources and changes in local meteorological parameters. In addition, long-range transport from other regions might have also contributed during certain periods as seen from the cluster and concentration weighted trajectory (CWT) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Andreae M O and Gelencsér A 2006 Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols; Atmos. Chem. Phys. 6 3131–3148.

    Article  Google Scholar 

  • Aruna K, Kumar T V L, Rao D N, Murthy B V K, Babu S S and Moorthy K K 2013 Black carbon aerosols in a tropical semi-urban coastal environment: Effects of boundary layer dynamics and long range transport; J. Atmos. Solar-Terr. Phys. 104 116–125.

    Article  Google Scholar 

  • Ashbaugh L L, Malm W C and Sadeh W Z 1985 A residence time probability analysis of sulfur concentrations at grand Canyon National Park; Atmos. Environ. 19 1263–1270.

    Article  Google Scholar 

  • Begam G R, Vachaspati C V, Ahammed Y N, Kumar K R, Babu S S and Reddy R R 2016 Measurement and analysis of black carbon aerosols over a tropical semi-arid station in Kadapa, India; Atmos. Res. 171 77–91.

    Article  Google Scholar 

  • Bond T C and Bergstrom R W 2006 Light absorption by carbonaceous particles: An investigative review; Aerosol. Sci. Technol. 40 27–67.

    Article  Google Scholar 

  • Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, Deangelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G and Zender C S 2013 Bounding the role of black carbon in the climate system: A scientific assessment; J. Geophys. Res. 118 5380–5552.

    Article  Google Scholar 

  • Buchunde P, Safai P D, Mukherjee S, Leena P P, Siingh D, Meena G S and Pandithurai G 2019 Characterisation of particulate matter at a high-altitude site in southwest India: Impact of dust episodes; J. Earth Syst. Sci. 128 237.

    Article  Google Scholar 

  • Das N, Baral S S, Sahoo S K, Mohapatra R K, Ramulu T S, Das S N and Chaudhury G R 2009 Aerosol physical characteristics at Bhubaneswar, East coast of India; Atmos. Res. 93 897–901.

    Article  Google Scholar 

  • Diapouli E, Kalogridis A C, Markantonaki C, Vratolis S, Fetfatzis P, Colombi C and Eleftheriadis K 2017 Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece; Atmosphere (Basel) 8 234.

    Article  Google Scholar 

  • Draxler R R and Rolph G D 2003 HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) NOAA Air Resources Laboratory, Silver Spring, MD Model, http://ready.arl.noaa.gov/ HYSPLIT.php.

  • Drinovec L, Močnik G, Zotter P, Prévôt A S H, Ruckstuhl C, Coz E, Rupakheti M, Sciare J, Müller T, Wiedensohler A and Hansen A D A 2015 The ‘dual-spot’ Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation; Atmos. Meas. Tech. 8 1965–1979.

    Article  Google Scholar 

  • Dumka U C, Manchanda R K, Sinha P R, Sreenivasan S, Moorthy K K and Suresh Babu S 2013 Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad; J. Atmos. Solar-Terr. Phys. 105–106 81–90.

    Article  Google Scholar 

  • Dumka U C, Kaskaoutis D G, Tiwari S, Safai P D, Attri S D, Soni V K, Singh N and Mihalopoulos N 2018 Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter; Atmos. Environ. 194 93–109.

    Article  Google Scholar 

  • Dumka U C, Kaskaoutis D G, Devara P C S, Kumar R, Kumar S, Tiwari S, Gerasopoulos E and Mihalopoulos N 2019 Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts; Atmos. Res. 216 11–25.

    Article  Google Scholar 

  • Fialho P, Hansen A D A and Honrath R E 2005 Absorption coefficients by aerosols in remote areas: A new approach to decouple dust and black carbon absorption coefficients using seven wavelength Aethalometer data; J. Aerosol. Sci. 36 267–282.

    Article  Google Scholar 

  • Gadhavi H and Jayaraman A 2010 Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing; Ann. Geophys. 28 103–111.

    Article  Google Scholar 

  • Ganguly D, Jayaraman A and Gadhavi H 2006 Physical and optical properties of aerosols over an urban location in western India: Seasonal variabilities; J. Geophys. Res. Atmos. 111 D24206.

    Article  Google Scholar 

  • Gogoi M M, Suresh Babu S, Krishna Moorthy K, Manoj M R and Chaubey J P 2013 Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust; Atmos. Environ. 73 92–102.

    Article  Google Scholar 

  • Grahame T J, Klemm R and Schlesinger R B 2014 Public health and components of particulate matter: The changing assessment of black carbon; J. Air Waste Manag. Assoc. 64 620–660.

    Article  Google Scholar 

  • Guha A, De Kumar B, Dhar P, Banik T, Chakraborty M, Roy R, Choudhury A, Gogoi M M, Suresh Babu S and Krishna Moorthy K 2015 Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India; Aerosol. Air Qual. Res. 15 786–798.

    Article  Google Scholar 

  • Hansen A D A, Rosen H and Novakov T 1984 The aethalometer – An instrument for the real-time measurement of optical absorption by aerosol particles; Sci. Total Environ. 36 191–196.

    Article  Google Scholar 

  • Inter-governmental Panel for Climate Change (IPCC) 2013 In: Climate Change 2013: The Physical Science Basis (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Joshi H, Naja M, Singh K P, Kumar R, Bhardwaj P, Babu S S, Satheesh S K, Moorthy K K and Chandola H C 2016 Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region; Atmos. Environ. 125 346–359.

    Article  Google Scholar 

  • Kim J J, Smorodinsky S, Lipsett M, Singer B C, Hodgson A T and Ostro B 2004 Traffic-related air pollution near busy roads: The East Bay Children’s Respiratory Health Study; Am. J. Respir. Crit. Care Med. 170 520–526.

    Article  Google Scholar 

  • Kirchstetter T W, Novakov T and Hobbs P V 2004 Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon; J. Geophys. Res. D Atmos. 109 1–12.

    Article  Google Scholar 

  • Kodinariya T M and Makwana P R 2013 Review on determining number of cluster in K Means clustering; Int. J. Adv. Res. Comput. Sci. Manage. Stud. 1(6) 90–95.

    Google Scholar 

  • Kolhe A R, Aher G R, Ralegankar S D and Safai P D 2018 Investigation of aerosol black carbon over semi-urban and urban locations in south-western India; Atmos. Pollut. Res. 9 1111–1130.

    Article  Google Scholar 

  • Kumar K R, Narasimhulu K, Balakrishnaiah G, Reddy B S K, Gopal K R, Reddy R R, Satheesh S K, Moorthy K K and Babu S S 2011 Characterization of aerosol black carbon over a tropical semi-arid region of Anantapur, India; Atmos. Res. 100 12–27.

    Article  Google Scholar 

  • Kumar R R, Soni V K and Jain M K 2020 Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three year measurements from IMD BC observation network; Sci. Total Environ. 723 138060.

    Article  Google Scholar 

  • Lan Z J, Huang X F, Yu K Y, Le Sun T, Zeng L W and Hu M 2013 Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China; Atmos. Environ. 69 118–123.

    Article  Google Scholar 

  • Leena P P, Vijayakumar K, Anilkumar V and Pandithurai G 2017 Analysing temporal variability of particulate matter and possible contributing factors over Mahabaleshwar, a high-altitude station in Western Ghats, India; J. Atmos. Solar-Terr. Phys. 164 105–115.

    Article  Google Scholar 

  • Moorthy K K, Suresh Babu S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties; Ann. Geophys. 25 2293–2308.

    Article  Google Scholar 

  • Mukherjee S, Singla V, Pandithurai G, Safai P D, Meena G S, Dani K K and Anil Kumar V 2018 Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India; Atmos. Environ. 180 79–92.

    Article  Google Scholar 

  • Pandey A and Venkataraman C 2014 Estimating emissions from the Indian transport sector with on-road fleet composition and traffic volume; Atmos. Environ. 98 123–133.

    Article  Google Scholar 

  • Panicker A S, Pandithurai G, Safai P D, Dipu S and Lee D I 2010 On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment; Atmos. Environ. 44 3066–3070.

    Article  Google Scholar 

  • Pathak B, Kalita G, Bhuyan K, Bhuyan P K and Moorthy K K 2010 Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the Northeast of India; J. Geophys. Res. Atmos. 115 D19204.

    Article  Google Scholar 

  • Petit J E, Favez O, Albinet A and Canonaco F 2017 A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses; Environ. Model. Softw. 88 183–187.

    Article  Google Scholar 

  • Purohit M K and Kaur S 2017 “Rainfall Statistics of India – 2016”, India Meteorological Department (Ministry of Earth Sciences), Report No. Esso/Imd/Hs/R. F. Report/01(2017)/23.

  • Rajesh T A and Ramachandran S 2017 Characteristics and source apportionment of black carbon aerosols over an urban site; Environ. Sci. Pollut. Res. 24 8411–8424.

    Article  Google Scholar 

  • Rajeshkumar R M, Bhaskar B V and Muthuchelian K 2019 Study on Diurnal and Seasonal Black Carbon and Aerosol Optical Depth Variation over a Semi-arid Region Madurai; Vayu Mandal 45 60–72.

    Google Scholar 

  • Ram K, Sarin M M and Hegde P 2008 Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability; Atmos. Environ. 42 6785–6796.

    Article  Google Scholar 

  • Ramanathan V and Carmichael G 2008 Global and regional climate changes due to black carbon; Nat. Geosci. 1 221–227.

    Article  Google Scholar 

  • Reddy K R O, Gugamsetty B, Kotalo R G, Nagireddy S K R, Tandule C R, Thotli L R, Shaik N H, Maraka V R, Rajuru R R and Surendran Nair S B 2017 Seasonal variation of near surface black carbon and satellite derived vertical distribution of aerosols over a semi-arid station in India; Atmos. Res. 184 77–87.

    Article  Google Scholar 

  • Rehman I H, Ahmed T, Praveen P S, Kar A and Ramanathan V 2011 Black carbon emissions from biomass and fossil fuels in rural India; Atmos. Chem. Phys. 11 7289–7299.

    Article  Google Scholar 

  • Safai P D, Raju M P, Budhavant K B, Rao P S P and Devara P C S 2013 Long-term studies on characteristics of black carbon aerosols over a tropical urban station Pune, India; Atmos. Res. 132–133 173–184.

    Article  Google Scholar 

  • Sandradewi J, Prévôt A S H, Weingartner E, Schmidhauser R, Gysel M and Baltensperger U 2008 A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer; Atmos. Environ. 42 101–112.

    Article  Google Scholar 

  • Sandrini S, Fuzzi S, Piazzalunga A, Prati P, Bonasoni P, Cavalli F, Bove M C, Calvello M, Cappelletti D, Colombi C, Contini D, de Gennaro G, Di Gilio A, Fermo P, Ferrero L, Gianelle V, Giugliano M, Ielpo P, Lonati G, Marinoni A, Massabò D, Molteni U, Moroni B, Pavese G, Perrino C, Perrone M G, Perrone M R, Putaud J P, Sargolini T, Vecchi R and Gilardoni S 2014 Spatial and seasonal variability of carbonaceous aerosol across Italy; Atmos. Environ. 99 587–598.

    Article  Google Scholar 

  • Satheesh S K, Vinoj V and Moorthy K K 2011 Weekly periodicities of aerosol properties observed at an urban location in India; Atmos. Res. 101 307–313.

    Article  Google Scholar 

  • Satsangi A, Pachauri T, Singla V, Lakhani A and Maharaj Kumari K 2010 Carbonaceous aerosols at a suburban site in Indo-Gangetic plain; India J. Radio Sp. Phys. 39 218–222.

    Google Scholar 

  • Saud T, Gautam R, Mandal T K, Gadi R, Singh D P, Sharma S K, Dahiya M and Saxena M 2012 Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India; Atmos. Environ. 61 212–220.

    Article  Google Scholar 

  • Segura S, Estellés V, Esteve A R, Marcos C R, Utrillas M P and Martínez-Lozano J A 2016 Multiyear in-situ measurements of atmospheric aerosol absorption properties at an urban coastal site in western Mediterranean; Atmos. Environ. 129 18–26.

    Article  Google Scholar 

  • Singh S, Tiwari S, Gond D P, Dumka U C, Bisht D S, Tiwari S, Pandithurai G and Sinha A 2015 Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India; Atmos. Res. 161–162 25–35.

    Article  Google Scholar 

  • Singla V, Mukherjee S, Kashikar A S, Safai P D and Pandithurai G 2019 Black carbon: Source apportionment and its implications on CCN activity over a rural region in Western Ghats, India; Environ. Sci. Pollut. Res. 26 7071–7081.

    Article  Google Scholar 

  • Sreekanth V, Niranjan K and Madhavan B L 2007 Radiative forcing of black carbon over eastern India; Geophys. Res. Lett. 34 1–5.

    Article  Google Scholar 

  • Stohl A 1996 Trajectory statistics – A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe; Atmos. Environ. 30 579–587.

    Article  Google Scholar 

  • Tiwari S, Srivastava A K, Bisht D S, Bano T, Singh S, Behura S, Srivastava M K, Chate D M and Padmanabhamurty B 2009 Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India; J. Atmos. Chem. 62 193–209.

    Article  Google Scholar 

  • Tiwari S, Srivastava A K, Bisht D S, Parmita P, Srivastava M K and Attri S D 2013 Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology; Atmos. Res. 125–126 50–62.

    Article  Google Scholar 

  • Udayasoorian C, Jayabalakrishnan R M, Suguna A R, Gogoi M and Suresh Babu S 2014 Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India; Ann. Geophys. 32 1361–1371.

    Article  Google Scholar 

  • Upadhyay S N and Singh R S 2010 Investigation of atmospheric aerosols from Varansi in the Indo-Gangetic plane; ARFI & ICARB Sci. Prog. Rep. ISRO-GBP India, pp. 55–60.

  • Vaishya A, Singh P, Rastogi S and Babu S S 2017 Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment; Atmos. Res. 185 13–21.

    Article  Google Scholar 

  • Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel A H and Friedlander S K 2005 Residential biofuels in South Asia: Carbonaceous aerosol emissions and climate impacts; Science 307 1454–1456.

    Article  Google Scholar 

  • Viidanoja J, Sillanpää M, Laakia J, Kerminen V M, Hillamo R, Aarnio P and Koskentalo T 2002 Organic and black carbon in PM2.5 and PM10: 1 Year of data from an urban site in Helsinki, Finland; Atmos. Environ. 36 3183–3193.

    Article  Google Scholar 

  • Vyas B M 2010 Studies of regional features of atmospheric aerosol, total carbonaceous aerosols and their role in the atmospheric radiative forcing effect over the tropical semi-arid location, i.e., Udaipur, western region part of India; ARFI & ICARB Sci. Prog. Rep. ISRO-GBP, India, pp. 67–70.

  • Zhu J, Crozier P A and Anderson J R 2013 Characterization of light-absorbing carbon particles at three altitudes in East Asian outflow by transmission electron microscopy; Atmos. Chem. Phys. 13 6359–6371.

    Article  Google Scholar 

  • Zotter P, Herich H, Gysel M, El-Haddad I, Zhang Y, Mocnik G, Hüglin C, Baltensperger U, Szidat S and Prévôt A S H 2017 Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol; Atmos. Chem. Phys. 17 4229–4249.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Indian Institute of Tropical Meteorology, Pune for his support and encouragement during the entire CAIPEEX ground campaign. Thanks are due to the Head, Environmental Sciences Department, Savitribai Phule Pune University, Pune for his support and guidance. The authors wish to express their gratitude to all the team members of CAIPEEX laboratory at Solapur for their help and co-operation.

Author information

Authors and Affiliations

Authors

Contributions

PSS designed the study, did data compilation, primary analysis and draft paper writing. PDS helped in data interpretation and editing of the paper. SM helped with discussion and writing on trajectory-related analysis. KT, SB, DG and NM were responsible for conducting the observations and data collection. TP was responsible for the overall project administration and management of the observational campaign and helped in data interpretation.

Corresponding author

Correspondence to P D Safai.

Additional information

Communicated by Suresh Babu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyam, P.S., Safai, P.D., Mukherjee, S. et al. Black carbon aerosols over a semi-arid rain shadow location in Peninsular India: Temporal variability and sources. J Earth Syst Sci 130, 95 (2021). https://doi.org/10.1007/s12040-021-01610-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01610-5

Keywords

Navigation