Skip to main content
Log in

Genomic and Allelic Analyses of Laccase Genes in Sugarcane (Saccharum spontaneum L.)

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Laccases play crucial roles in catalyzing lignin and flavonoid biosynthesis in plants, and are predominantly involved in lignin breakdown of bacteria and fungi. Lignin distributes in all parts of plant and is a key component in plant morphogenesis. The complex sugarcane genome limited the study of laccase genes, but our completed reference genome of tetraploid S. spontaneum AP85–441 makes it possible to study this gene family. We identified 29 laccase genes, and 10 genes with 4 alleles, 9 genes with 3 alleles, 5 genes with 2 alleles, 5 genes with 1 allele in sugarcane. Among them 4 genes have tandemly dupicated paralogs; and 12 genes have dispersely distributed paralogs. They distributed unevenly among 27 of 32 chromosomes, and 9 (31.03%) genes located in Chromosome 3. Phylogeny and conserved domain suggested sugarcane laccase genes had the highest similarity with sorghum, and laccase10 was the most conserved gene in monocots and dicotyledons. We found sugarcane laccase genes were regulated by light signal, phytohormones, abiotic stress and some tissue-specific transcription factors by predicted cis-elements in the promoters. Nine laccase genes had miR397 and miR528 target sites, which have been reported as post-transcriptionally regulated laccase genes. Four laccase genes had 4 new miRNA target sites, including stem specific miRNA. Analysis of RNA-seq data of different developmental stages of leaves and stems showed that 27 genes had expression of those tissues, and most of them mainly express in stems. Among them laccase 4 and laccase10 showed the highest expression level in mature stems, while laccase27 showed the highest expression in seedling leaves. Our results show the potential function of sugarcane laccase genes in catalyzing lignin biosynthesis, stress resistance, and morphogenesis. These findings and genomic resources will facilitate research on improving stress tolerance, lignin content, and biomass yield in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283(23):15932–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldrian P (2006) Fungal laccases - occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23(3):1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bryan AC, Jawdy S, Gunter L, Gjersing E, Sykes R, Hinchee MA, Winkeler KA, Collins CM, Engle N, Tschaplinski TJ, Yang XH, Tuskan GA, Muchero W, Chen JG (2016) Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. Plant Bio J 14(10):2010–2020

    Article  CAS  Google Scholar 

  • Chen C, Chen H, HeY XR (2018) Toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv. https://doi.org/10.1101/289660

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179(3):145–150

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biot 58(5):582–594

    Article  CAS  Google Scholar 

  • Dai XB, Zhuang ZH, Zhao PXC (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang HB, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Molec 34(1):29–41

    Article  CAS  Google Scholar 

  • Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–U130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara M, Hartmann D, Mendoza M (2016) Diverse: an R package to measure diversity in complex systems. The R Journal 8(2):60–78

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J and Gao G. (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R (2010) Transcriptome-wide identification of microRNA targets in rice. The Plant J: for cell and molecular biology 62(5):742–759

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226

    Article  CAS  PubMed  Google Scholar 

  • McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221(5):619–636

    Article  CAS  PubMed  Google Scholar 

  • Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV (2014) Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. Plant Bio J 12(2):204–218

    Article  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17(11):2966–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao LY, Zhang WP, Li XY, Zhang L, Zhang XJ, Li X, Guo HJ, Ren Y, Zheng J, Chang ZJ (2018) Characterization and expression patterns of auxin response factors in wheat. Frontier in plant science 9

  • Que YX, Xu LP, Xu JS, Zhang JS, Zhang MQ, Cheng RK (2009) Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chinese journal of tropical crops 30(3):274–278

    Google Scholar 

  • Quinn CR, Iriyama R, Fernando DD (2015) Computational predictions and expression patterns of conserved microRNAs in loblolly pine (Pinus taeda). Tree Genet Genomes 11(1):806

    Article  Google Scholar 

  • Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V (2016) Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) moench, a food, fodder, and biofuel crop. Front plant Sci 7

  • Reinhammar B, Malmstroem BG (1981) “Blue” copper-containing oxidases. In: Spiro TG (ed) copper proteinsvol. Wiley, New York, NY 3:109–149

    CAS  Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thony-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):1–10

    Article  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlapati PV, Kim KW, Davin LB, Lewis NG (2011) The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta 233(3):439–470

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X, Chen YQ (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Bio J 12(8):1132–1142

    Article  CAS  Google Scholar 

  • Xu C, Yang RF, Li WC, Fu FL (2010) Identification of 21 microRNAs in maize and their differential expression under drought stress. Afr J Biotechnol 9(30):13

    Google Scholar 

  • Yan Z, Wu LZ, Wang X, Chen B, Zhao J, Cui J, Li ZK, Yang J, Wu LQ, Wu JH, Zhang GY, Ma ZY (2018) The cotton laccase gene GhLAC15 enhances verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol Plant Pathol 20:309–322. https://doi.org/10.1111/mpp.12755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Cong L, Zhu Z, Wang C, Zou J, Tao C, Shi Z, Lu X (2015) Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene 571(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by startup fund from Fujian Agriculture and Forestry University, the International Consortium for Sugarcane Biotechnology project #35 to R.M., US DOE DE-SC0010686, and EBI BP2012OO2J17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Communicated by: Paulo Arruda

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Lin, J., Dong, F. et al. Genomic and Allelic Analyses of Laccase Genes in Sugarcane (Saccharum spontaneum L.). Tropical Plant Biol. 12, 219–229 (2019). https://doi.org/10.1007/s12042-019-09239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-019-09239-x

Keywords

Navigation